suprise to some callers, e.g. register coalescer. For now, add an parameter
that tells AnalyzeBranch whether it's safe to modify the mbb. A better
solution is out there, but I don't have time to deal with it right now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64124 91177308-0d34-0410-b5e6-96231b3b80d8
the conditional for the BRCOND statement. For instance, it will generate:
addl %eax, %ecx
jo LOF
instead of
addl %eax, %ecx
; About 10 instructions to compare the signs of LHS, RHS, and sum.
jl LOF
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60123 91177308-0d34-0410-b5e6-96231b3b80d8
Where previously LLVM might emit code like this:
ucomisd %xmm1, %xmm0
setne %al
setp %cl
orb %al, %cl
jne .LBB4_2
it now emits this:
ucomisd %xmm1, %xmm0
jne .LBB4_2
jp .LBB4_2
It has fewer instructions and uses fewer registers, but it does
have more branches. And in the case that this code is followed by
a non-fallthrough edge, it may be followed by a jmp instruction,
resulting in three branch instructions in sequence. Some effort
is made to avoid this situation.
To achieve this, X86ISelLowering.cpp now recognizes FCMP_OEQ and
FCMP_UNE in lowered form, and replace them with code that emits
two branches, except in the case where it would require converting
a fall-through edge to an explicit branch.
Also, X86InstrInfo.cpp's branch analysis and transform code now
knows now to handle blocks with multiple conditional branches. It
uses loops instead of having fixed checks for up to two
instructions. It can now analyze and transform code generated
from FCMP_OEQ and FCMP_UNE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57873 91177308-0d34-0410-b5e6-96231b3b80d8
and X86FastISel.cpp into X86MachineFunction.h, so that it
can be shared, instead of having each selector keep track
of its own.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56825 91177308-0d34-0410-b5e6-96231b3b80d8
was inserted or not. This allows bitcast in fast isel to properly handle the case
where an appropriate reg-to-reg copy is not available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55375 91177308-0d34-0410-b5e6-96231b3b80d8
MachineMemOperands. The pools are owned by MachineFunctions.
This drastically reduces the number of calls to malloc/free made
during the "Emit" phase of scheduling, as well as later phases
in CodeGen. Combined with other changes, this speeds up the
"instruction selection" phase of CodeGen by 10% in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53212 91177308-0d34-0410-b5e6-96231b3b80d8
Also, if LV isn't around, then TwoAddr doesn't need to be updating flags, since they won't have been set in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53058 91177308-0d34-0410-b5e6-96231b3b80d8
This eliminates the need for several awkward casts, including
the last dynamic_cast under lib/Target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51091 91177308-0d34-0410-b5e6-96231b3b80d8
Note: the coalescer will have to be careful about this too, when it starts coalescing insert_subreg nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48329 91177308-0d34-0410-b5e6-96231b3b80d8
Change insert/extract subreg instructions to be able to be used in TableGen patterns.
Use the above features to reimplement an x86-64 pseudo instruction as a pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48130 91177308-0d34-0410-b5e6-96231b3b80d8
both work right according to the new flags.
This removes the TII::isReallySideEffectFree predicate, and adds
TII::isInvariantLoad.
It removes NeverHasSideEffects+MayHaveSideEffects and adds
UnmodeledSideEffects as machine instr flags. Now the clients
can decide everything they need.
I think isRematerializable can be implemented in terms of the
flags we have now, though I will let others tackle that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45843 91177308-0d34-0410-b5e6-96231b3b80d8
a header file from libcodegen. This violates a layering order: codegen
depends on target, not the other way around. The fix to this is to
split TII into two classes, TII and TargetInstrInfoImpl, which defines
stuff that depends on libcodegen. It is defined in libcodegen, where
the base is not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45475 91177308-0d34-0410-b5e6-96231b3b80d8
function, then go ahead and hoist it out of the loop. This is the result:
$ cat a.c
volatile int G;
int A(int N) {
for (; N > 0; --N)
G++;
}
$ llc -o - -relocation-model=pic
_A:
...
LBB1_2: # bb
movl L_G$non_lazy_ptr-"L1$pb"(%eax), %esi
incl (%esi)
incl %edx
cmpl %ecx, %edx
jne LBB1_2 # bb
...
$ llc -o - -relocation-model=pic -machine-licm
_A:
...
movl L_G$non_lazy_ptr-"L1$pb"(%eax), %eax
LBB1_2: # bb
incl (%eax)
incl %edx
cmpl %ecx, %edx
jne LBB1_2 # bb
...
I'm limiting this to the MOV32rm x86 instruction for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45444 91177308-0d34-0410-b5e6-96231b3b80d8
based what flag to set on whether it was already marked as
"isRematerializable". If there was a further check to determine if it's "really"
rematerializable, then I marked it as "mayHaveSideEffects" and created a check
in the X86 back-end similar to the remat one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45132 91177308-0d34-0410-b5e6-96231b3b80d8