failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73431 91177308-0d34-0410-b5e6-96231b3b80d8
they contain multiplications of constants with add operations.
This helps simplify several kinds of things; in particular it
helps simplify expressions like ((-1 * (%a + %b)) + %a) to %b,
as expressions like this often come up in loop trip count
computations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73361 91177308-0d34-0410-b5e6-96231b3b80d8
even though the order doesn't matter at the top level of an expression,
it does matter when the constant is a subexpression of an n-ary
expression, because n-ary expressions are sorted lexicographically.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73358 91177308-0d34-0410-b5e6-96231b3b80d8
induction variable when the addrec to be expanded does not require
a wider type. This eliminates the need for IndVarSimplify to
micro-manage SCEV expansions, because SCEVExpander now
automatically expands them in the form that IndVarSimplify considers
to be canonical. (LSR still micro-manages its SCEV expansions,
because it's optimizing for the target, rather than for
other optimizations.)
Also, this uses the new getAnyExtendExpr, which has more clever
expression simplification logic than the IndVarSimplify code it
replaces, and this cleans up some ugly expansions in code such as
the included masked-iv.ll testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73294 91177308-0d34-0410-b5e6-96231b3b80d8
immediately casted. At present, this is just a minor code
simplification. In the future, the expansion code may be able
to make better choices if it knows what the desired result
type will be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73137 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
TargetData pointer. The only thing it's used for are
calls to ConstantFoldCompareInstOperands and
ConstantFoldInstOperands, which both already accept a
null TargetData pointer. This makes
ConstantFoldConstantExpression easier to use in clients
where TargetData is optional.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72741 91177308-0d34-0410-b5e6-96231b3b80d8
possible. For example, it now emits
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 2, i64 %tmp, i64 1
instead of the equivalent but less obvious
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 0, i64 %tmp, i64 19
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72452 91177308-0d34-0410-b5e6-96231b3b80d8
beyond their associated static array type.
I believe that this fixes a legitimate bug, because BasicAliasAnalysis
already has code to check for this condition that works for non-constant
indices, however it was missing the case of constant indices. With this
change, it checks for both.
This fixes PR4267, and miscompiles of SPEC 188.ammp and 464.h264.href.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72451 91177308-0d34-0410-b5e6-96231b3b80d8
that of the LHS. It doesn't matter for correctness, but the LHS
is more likely than the RHS to be a pointer type in exotic cases,
and it's more tidy to have it return the integer type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72424 91177308-0d34-0410-b5e6-96231b3b80d8
division operation, don't attempt to use the operation's value as
the base of a getelementptr. This fixes PR4271.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72422 91177308-0d34-0410-b5e6-96231b3b80d8
low-level alias() method, allowing it to reason more aggressively
about pointers into constant memory. PR4189
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72403 91177308-0d34-0410-b5e6-96231b3b80d8
in the case where a loop exit value cannot be computed, instead of only in
some cases while using SCEVCouldNotCompute in others. This simplifies
getSCEVAtScope's callers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72375 91177308-0d34-0410-b5e6-96231b3b80d8
sending SCEVUnknowns to expandAddToGEP. This avoids the need for
expandAddToGEP to bend the rules and peek into SCEVUnknown
expressions.
Factor out the code for testing whether a SCEV can be factored by
a constant for use in a GEP index. This allows it to handle
SCEVAddRecExprs, by recursing.
As a result, SCEVExpander can now put more things in GEP indices,
so it emits fewer explicit mul instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72366 91177308-0d34-0410-b5e6-96231b3b80d8
Fix by clearing the rewriter cache before deleting the trivially dead
instructions.
Also make InsertedExpressions use an AssertingVH to catch these
bugs easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72364 91177308-0d34-0410-b5e6-96231b3b80d8
use in expanding SCEVAddExprs with GEPs. The operands of a
SCEVMulExpr need to be multiplied together, not added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72250 91177308-0d34-0410-b5e6-96231b3b80d8
Instcombine to be more aggressive about using SimplifyDemandedBits
on shift nodes. This allows a shift to be simplified to zero in the
included test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72204 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72093 91177308-0d34-0410-b5e6-96231b3b80d8
IVUsers.cpp: In member function ‘bool llvm::IVUsers::AddUsersIfInteresting(llvm::Instruction*)’:
IVUsers.cpp:221: warning: ‘isSigned’ may be used uninitialized in this function
with gcc-4.3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71654 91177308-0d34-0410-b5e6-96231b3b80d8
getNoopOrSignExtend, and getTruncateOrNoop. These are similar
to getTruncateOrZeroExtend etc., except that they assert that
the conversion is either not widening or narrowing, as
appropriate. These will be used in some upcoming fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71632 91177308-0d34-0410-b5e6-96231b3b80d8
and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.
This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.
Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71535 91177308-0d34-0410-b5e6-96231b3b80d8
These values aren't analyzable, so they don't care if more information
about the loop trip count can be had. Also, SCEVUnknown is used for
a PHI while the PHI itself is being analyzed, so it needs to be left
in the Scalars map. This fixes a variety of subtle issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71533 91177308-0d34-0410-b5e6-96231b3b80d8
return the correct value when the cast operand is all zeros. This ought
to be pretty rare, because it would mean that the regular SCEV folding
routines missed a case, though there are cases they might legitimately
miss. Also, it's unlikely anything currently using GetMinTrailingZeros
cares about this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71532 91177308-0d34-0410-b5e6-96231b3b80d8
add-recurrence to be exposed. Add a new SCEV folding rule to
help simplify expressions in the presence of these extra truncs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71264 91177308-0d34-0410-b5e6-96231b3b80d8
which are not analyzed with SCEV techniques, which can require
brute-forcing through a large number of instructions. This
fixes a massive compile-time issue on 400.perlbench (in
particular, the loop in MD5Transform).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71259 91177308-0d34-0410-b5e6-96231b3b80d8
bits captured, but the pointer marked nocapture. In fact
I now recall that this problem is why only readnone functions
returning void were considered before! However keep a small
fix that was also in r70876: a readnone function returning
void can result in bits being captured if it unwinds, so
test for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71168 91177308-0d34-0410-b5e6-96231b3b80d8
checking for bcopy... no
checking for getc_unlocked... Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decUtility.c:360: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decUtility.o] Error 1
make[4]: *** Waiting for unfinished jobs....
Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decNumber.c:5591: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decNumber.o] Error 1
make[3]: *** [all-stage2-libdecnumber] Error 2
make[3]: *** Waiting for unfinished jobs....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71165 91177308-0d34-0410-b5e6-96231b3b80d8
to sorting SCEVs by their kind, sort SCEVs of the same kind according
to their operands. This helps avoid things like (a+b) being a distinct
expression from (b+a).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71160 91177308-0d34-0410-b5e6-96231b3b80d8
array and the add is within range. This helps simplify expressions
expanded by ScalarEvolutionExpander.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71158 91177308-0d34-0410-b5e6-96231b3b80d8
CallbackVH, with fixes. allUsesReplacedWith need to
walk the def-use chains and invalidate all users of a
value that is replaced. SCEVs of users need to be
recalcualted even if the new value is equivalent. Also,
make forgetLoopPHIs walk def-use chains, since any
SCEV that depends on a PHI should be recalculated when
more information about that PHI becomes available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70927 91177308-0d34-0410-b5e6-96231b3b80d8
makes ScalarEvolution::deleteValueFromRecords, and it's code that
subtly needed to be called before ReplaceAllUsesWith, unnecessary.
It also makes ValueDeletionListener unnecessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70645 91177308-0d34-0410-b5e6-96231b3b80d8
it also forget any SCEVs associated with loop-header PHIs in the loop,
as they may be dependent on trip count information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70633 91177308-0d34-0410-b5e6-96231b3b80d8
artificial "ptrtoint", as it tends to clutter up complicated
expressions. The cast operators now print both source and
destination types, which is usually sufficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70554 91177308-0d34-0410-b5e6-96231b3b80d8
compute an upper-bound value for the trip count, in addition to
the actual trip count. Use this to allow getZeroExtendExpr and
getSignExtendExpr to fold casts in more cases.
This may eventually morph into a more general value-range
analysis capability; there are certainly plenty of places where
more complete value-range information would allow more folding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70509 91177308-0d34-0410-b5e6-96231b3b80d8
(sext i8 {-128,+,1} to i64) to i64 {-128,+,1}, where the iteration
crosses from negative to positive, but is still safe if the trip
count is within range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70421 91177308-0d34-0410-b5e6-96231b3b80d8
print sext, zext, and trunc, instead of signextend, zeroextend,
and truncate, respectively, for consistency with the main IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70405 91177308-0d34-0410-b5e6-96231b3b80d8
information to simplify [sz]ext({a,+,b}) to {zext(a),+,[zs]ext(b)},
as appropriate.
These functions and the trip count code each call into the other, so
this requires careful handling to avoid infinite recursion. During
the initial trip count computation, conservative SCEVs are used,
which are subsequently discarded once the trip count is actually
known.
Among other benefits, this change lets LSR automatically eliminate
some unnecessary zext-inreg and sext-inreg operation where the
operand is an induction variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70241 91177308-0d34-0410-b5e6-96231b3b80d8
with the persistent insertion point, and change IndVars to make
use of it. This fixes a bug where IndVars was holding on to a
stale insertion point and forcing the SCEVExpander to continue to
use it.
This fixes PR4038.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69892 91177308-0d34-0410-b5e6-96231b3b80d8
instructions in order to avoid inserting new ones. However, if
the cast instruction is the SCEVExpander's InsertPt, this
causes subsequently emitted instructions to be inserted near
the cast, and not at the location of the original insert point.
Fix this by adjusting the insert point in such cases.
This fixes PR4009.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69808 91177308-0d34-0410-b5e6-96231b3b80d8
type to truncate to should be the number of bits of the value that are
preserved, not the number that are clobbered with sign-extension.
This fixes regressions in ldecod.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69704 91177308-0d34-0410-b5e6-96231b3b80d8
as they appear in LLVM IR. This isn't particularly interesting
on its own; this is just setting up some infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69655 91177308-0d34-0410-b5e6-96231b3b80d8
size from the integer, requiring zero extension or truncation. Don't
create ZExtInsts with pointer types. This fixes a regression in
consumer-jpeg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69307 91177308-0d34-0410-b5e6-96231b3b80d8
not create ICmpInsts with operands of different types. This fixes
a regression in Applications/d/make_dparser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69294 91177308-0d34-0410-b5e6-96231b3b80d8
have pointer types, though in contrast to C pointer types, SCEV
addition is never implicitly scaled. This not only eliminates the
need for special code like IndVars' EliminatePointerRecurrence
and LSR's own GEP expansion code, it also does a better job because
it lets the normal optimizations handle pointer expressions just
like integer expressions.
Also, since LLVM IR GEPs can't directly index into multi-dimensional
VLAs, moving the GEP analysis out of client code and into the SCEV
framework makes it easier for clients to handle multi-dimensional
VLAs the same way as other arrays.
Some existing regression tests show improved optimization.
test/CodeGen/ARM/2007-03-13-InstrSched.ll in particular improved to
the point where if-conversion started kicking in; I turned it off
for this test to preserve the intent of the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69258 91177308-0d34-0410-b5e6-96231b3b80d8
- Make type declarations match the struct/class keyword of the definition.
- Move AddSignalHandler into the namespace where it belongs.
- Correctly call functions from template base.
- Some other small changes.
With this patch, LLVM and Clang should build properly and with far less noise under VS2008.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67347 91177308-0d34-0410-b5e6-96231b3b80d8
the inliner; prevents nondeterministic behavior
when the same address is reallocated.
Don't build call graph nodes for debug intrinsic calls;
they're useless, and there were typically a lot of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67311 91177308-0d34-0410-b5e6-96231b3b80d8
the set of blocks in which values are used, the set in which
values are live-through, and the set in which values are
killed. For the live-through and killed sets, conservative
approximations are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67309 91177308-0d34-0410-b5e6-96231b3b80d8
changes.
For InvokeInst now all arguments begin at op_begin().
The Callee, Cont and Fail are now faster to get by
access relative to op_end().
This patch introduces some temporary uglyness in CallSite.
Next I'll bring CallInst up to a similar scheme and then
the uglyness will magically vanish.
This patch also exposes all the reliance of the libraries
on InvokeInst's operand ordering. I am thinking of taking
care of that too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66920 91177308-0d34-0410-b5e6-96231b3b80d8
to obtain debug info about them.
Introduce helpers to access debug info for global variables. Also introduce a
helper that works for both local and global variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66541 91177308-0d34-0410-b5e6-96231b3b80d8
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66339 91177308-0d34-0410-b5e6-96231b3b80d8
get nice and happy stack traces when we crash in an optimizer or codegen. For
example, an abort put in UnswitchLoops now looks like this:
Stack dump:
0. Program arguments: clang pr3399.c -S -O3
1. <eof> parser at end of file
2. per-module optimization passes
3. Running pass 'CallGraph Pass Manager' on module 'pr3399.c'.
4. Running pass 'Loop Pass Manager' on function '@foo'
5. Running pass 'Unswitch loops' on basic block '%for.inc'
Abort
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66260 91177308-0d34-0410-b5e6-96231b3b80d8
to more accurately describe what it does. Expand its doxygen comment
to describe what the backedge-taken count is and how it differs
from the actual iteration count of the loop. Adjust names and
comments in associated code accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65382 91177308-0d34-0410-b5e6-96231b3b80d8
ashr instcombine to help expose this code. And apply the fix to
SelectionDAG's copy of this code too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65364 91177308-0d34-0410-b5e6-96231b3b80d8
trip count value when the original loop iteration condition is
signed and the canonical induction variable won't undergo signed
overflow. This isn't required for correctness; it just preserves
more information about original loop iteration values.
Add a getTruncateOrSignExtend method to ScalarEvolution,
following getTruncateOrZeroExtend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64918 91177308-0d34-0410-b5e6-96231b3b80d8
modified in a way that may effect the trip count calculation. Change
IndVars to use this method when it rewrites pointer or floating-point
induction variables instead of using a doInitialization method to
sneak these changes in before ScalarEvolution has a chance to see
the loop. This eliminates the need for LoopPass to depend on
ScalarEvolution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64810 91177308-0d34-0410-b5e6-96231b3b80d8
it only reads memory! The other change has no
functional effect, it just seems more logical to
go in order of decreasing knowledge.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64463 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure the SCC pass manager initializes any contained
function pass managers. Without this, simplify-libcalls
would add nocapture attributes when run on its own, but
not when run as part of -std-compile-opts or similar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64443 91177308-0d34-0410-b5e6-96231b3b80d8
couldn't ever be the return of call instruction. However, it's quite possible
that said local allocation is itself the return of a function call. That's
what malloc and calloc are for, actually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64442 91177308-0d34-0410-b5e6-96231b3b80d8
loop induction on LP64 targets. When the induction variable is
used in addressing, IndVars now is usually able to inserst a
64-bit induction variable and eliminates the sign-extending cast.
This is also useful for code using C "short" types for
induction variables on targets with 32-bit addressing.
Inserting a wider induction variable is easy; the tricky part is
determining when trunc(sext(i)) expressions are no-ops. This
requires range analysis of the loop trip count. A common case is
when the original loop iteration starts at 0 and exits when the
induction variable is signed-less-than a fixed value; this case
is now handled.
This replaces IndVarSimplify's OptimizeCanonicalIVType. It was
doing the same optimization, but it was limited to loops with
constant trip counts, because it was running after the loop
rewrite, and the information about the original induction
variable is lost by that point.
Rename ScalarEvolution's executesAtLeastOnce to
isLoopGuardedByCond, generalize it to be able to test for
ICMP_NE conditions, and move it to be a public function so that
IndVars can use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64407 91177308-0d34-0410-b5e6-96231b3b80d8
function pass managers. Without this, simplify-libcalls
would add nocapture attributes when run on its own, but
not when run as part of -std-compile-opts or similar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64300 91177308-0d34-0410-b5e6-96231b3b80d8
they are useful to analyses other than BasicAliasAnalysis.cpp. Include
the full comment for isIdentifiedObject in the header file. Thanks to
Chris for suggeseting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63589 91177308-0d34-0410-b5e6-96231b3b80d8
information output. However, many target specific tool chains prefer to encode
only one compile unit in an object file. In this situation, the LLVM code
generator will include debugging information entities in the compile unit
that is marked as main compile unit. The code generator accepts maximum one main
compile unit per module. If a module does not contain any main compile unit
then the code generator will emit multiple compile units in the output object
file.
[Part 1]
Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit.
Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here.
Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit.
[Part 2]
Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs.
---
This is Part 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63400 91177308-0d34-0410-b5e6-96231b3b80d8
If a MachineInstr doesn't have a memoperand but has an opcode that
is known to load or store, assume its memory reference may alias
*anything*, including stack slots which the compiler completely
controls.
To partially compensate for this, teach the ScheduleDAG building
code to do basic getUnderlyingValue analysis. This greatly
reduces the number of instructions that require restrictive
dependencies. This code will need to be revisited when we start
doing real alias analysis, but it should suffice for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63370 91177308-0d34-0410-b5e6-96231b3b80d8
DW_AT_APPLE_optimized flag is set when a compile_unit is optimized. The debugger takes advantage of this information some way.
DW_AT_APPLE_flags encodes command line options when certain env. variable is set. This is used by build engineers to track various gcc command lines used by by a project, irrespective of whether the project used makefile, Xcode or something else.
llvm-gcc patch is next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62888 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids using a dangling pointer.
Reset NumSortedEntries after restoring Cache to avoid extraneous sorts.
This fixes the reduced sqlite3 testcase, but apparently not the whole app.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62838 91177308-0d34-0410-b5e6-96231b3b80d8
analyses could be run without the caches properly sorted. This
can fix all sorts of weirdness. Many thanks to Bill for coming
up with the 'issorted' verification idea.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62757 91177308-0d34-0410-b5e6-96231b3b80d8
doing very similar pointer capture analysis.
Factor out the common logic. The new version
is from FunctionAttrs since it does a better
job than the version in BasicAliasAnalysis
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62461 91177308-0d34-0410-b5e6-96231b3b80d8
will get its preferred alignment. It has to be careful and cautiously assume
it will just get the ABI alignment. This prevents instcombine from rounding
up the alignment of a load/store without adjusting the alignment of the alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61934 91177308-0d34-0410-b5e6-96231b3b80d8
The problematic part of this patch is that we were out of attribute bits,
requiring some fancy bit hacking to make it fit (by shrinking alignment)
without breaking existing users or the file format.
This change will require users to rebuild llvm-gcc to match llvm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61239 91177308-0d34-0410-b5e6-96231b3b80d8
First step to resolve this is, record file name and directory directly in debug info for various debug entities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61164 91177308-0d34-0410-b5e6-96231b3b80d8
which source/line a certain BB/instruction comes from, original variable names,
and original (unmangled) C++ name of functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61085 91177308-0d34-0410-b5e6-96231b3b80d8
visited set before they are used. If used, their blocks need to be
added to the visited set so that subsequent queries don't use conflicting
pointer values in the cache result blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61080 91177308-0d34-0410-b5e6-96231b3b80d8
memdep keeps track of how PHIs affect the pointer in dep queries, which
allows it to eliminate the load in cases like rle-phi-translate.ll, which
basically end up being:
BB1:
X = load P
br BB3
BB2:
Y = load Q
br BB3
BB3:
R = phi [P] [Q]
load R
turning "load R" into a phi of X/Y. In addition to additional exposed
opportunities, this makes memdep safe in many cases that it wasn't before
(which is required for load PRE) and also makes it substantially more
efficient. For example, consider:
bb1: // has many predecessors.
P = some_operator()
load P
In this example, previously memdep would scan all the predecessors of BB1
to see if they had something that would mustalias P. In some cases (e.g.
test/Transforms/GVN/rle-must-alias.ll) it would actually find them and end
up eliminating something. In many other cases though, it would scan and not
find anything useful. MemDep now stops at a block if the pointer is defined
in that block and cannot be phi translated to predecessors. This causes it
to miss the (rare) cases like rle-must-alias.ll, but makes it faster by not
scanning tons of stuff that is unlikely to be useful. For example, this
speeds up GVN as a whole from 3.928s to 2.448s (60%)!. IMO, scalar GVN
should be enhanced to simplify the rle-must-alias pointer base anyway, which
would allow the loads to be eliminated.
In the future, this should be enhanced to phi translate through geps and
bitcasts as well (as indicated by FIXMEs) making memdep even more powerful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61022 91177308-0d34-0410-b5e6-96231b3b80d8
parallel, allowing it to decide that P/Q must alias if A/B
must alias in things like:
P = gep A, 0, i, 1
Q = gep B, 0, i, 1
This allows GVN to delete 62 more instructions out of 403.gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60820 91177308-0d34-0410-b5e6-96231b3b80d8
of a pointer. This allows is to catch more equivalencies. For example,
the type_lists_compatible_p function used to require two iterations of
the gvn pass (!) to delete its 18 redundant loads because the first pass
would CSE all the addressing computation cruft, which would unblock the
second memdep/gvn passes from recognizing them. This change allows
memdep/gvn to catch all 18 when run just once on the function (as is
typical :) instead of just 3.
On all of 403.gcc, this bumps up the # reundandancies found from:
63 gvn - Number of instructions PRE'd
153991 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
to:
63 gvn - Number of instructions PRE'd
154137 gvn - Number of instructions deleted
50185 gvn - Number of loads deleted
+120 loads deleted isn't bad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60799 91177308-0d34-0410-b5e6-96231b3b80d8
tricks based on readnone/readonly functions.
Teach memdep to look past readonly calls when analyzing
deps for a readonly call. This allows elimination of a
few more calls from 403.gcc:
before:
63 gvn - Number of instructions PRE'd
153986 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
after:
63 gvn - Number of instructions PRE'd
153991 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
5 calls isn't much, but this adds plumbing for the next change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60794 91177308-0d34-0410-b5e6-96231b3b80d8
load dependence queries. This allows GVN to eliminate a few more
instructions on 403.gcc:
152598 gvn - Number of instructions deleted
49240 gvn - Number of loads deleted
after:
153986 gvn - Number of instructions deleted
50069 gvn - Number of loads deleted
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60786 91177308-0d34-0410-b5e6-96231b3b80d8
the first block of a query specially. This makes the "complete query
caching" subsystem more effective, avoiding predecessor queries. This
speeds up GVN another 4%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60752 91177308-0d34-0410-b5e6-96231b3b80d8
track of whether the CachedNonLocalPointerInfo for a block is specific
to a block. If so, just return it without any pred scanning. This is
good for a 6% speedup on GVN (when it uses this lookup method, which
it doesn't right now).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60695 91177308-0d34-0410-b5e6-96231b3b80d8