Remove the unused reserved_ bit vector, no functional change intended.
This doesn't break 'svn blame', this file really is all my fault.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127607 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the allocator to free any resources used by the virtual register,
including physical register assignments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127560 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-gcc-i386-linux-selfhost and llvm-x86_64-linux-checks buildbots.
The original log entry:
Remove optimization emitting a reference insted of label difference, since
it can create more relocations. Removed isBaseAddressKnownZero method,
because it is no longer used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127540 91177308-0d34-0410-b5e6-96231b3b80d8
Live range splitting can create a number of small live ranges containing only a
single real use. Spill these small live ranges along with the large range they
are connected to with copies. This enables memory operand folding and maximizes
the spill to fill distance.
Work in progress with known bugs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127529 91177308-0d34-0410-b5e6-96231b3b80d8
There are too many compatibility problems with using mixed types in
std::upper_bound, and I don't want to spend 110 lines of boilerplate setting up
a call to a 10-line function. Binary search is not /that/ hard to implement
correctly.
I tried terminating the binary search with a linear search, but that actually
made the algorithm slower against my expectation. Most live intervals have less
than 4 segments. The early test against endIndex() does pay, and this version is
25% faster than plain std::upper_bound().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127522 91177308-0d34-0410-b5e6-96231b3b80d8
protector insertion not working correctly with unreachable code. Since that
revision was rolled out, this test doesn't actual fail before this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127497 91177308-0d34-0410-b5e6-96231b3b80d8
The existing CompEnd predicate does not define a strict weak order as required
by the C++03 standard; therefore, its use as a predicate to std::upper_bound
is invalid. For a discussion of this issue, see
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#270
This patch replaces the asymmetrical comparison with an iterator adaptor that
achieves the same effect while being strictly standard-conforming by ensuring
an apples-to-apples comparison.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127462 91177308-0d34-0410-b5e6-96231b3b80d8
flexible.
If it returns a register class that's different from the input, then that's the
register class used for cross-register class copies.
If it returns a register class that's the same as the input, then no cross-
register class copies are needed (normal copies would do).
If it returns null, then it's not at all possible to copy registers of the
specified register class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127368 91177308-0d34-0410-b5e6-96231b3b80d8
The damage done by physreg coalescing only depends on the number of instructions
the extended physreg live range covers. This fixes PR9438.
The heuristic is still luck-based, and physreg coalescing really should be
disabled completely. We need a register allocator with better hinting support
before that is possible.
Convert a test to FileCheck and force spilling by inserting an extra call. The
previous spilling behavior was dependent on misguided physreg coalescing
decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127351 91177308-0d34-0410-b5e6-96231b3b80d8
This will we used for keeping register allocator data structures up to date
while LiveRangeEdit is trimming live intervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127300 91177308-0d34-0410-b5e6-96231b3b80d8
LiveRangeEdit::eliminateDeadDefs() will eventually be used by coalescing,
splitting, and spilling for dead code elimination. It can delete chains of dead
instructions as long as there are no dependency loops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127287 91177308-0d34-0410-b5e6-96231b3b80d8
with this before since none of the register tracking or nightly tests
had unschedulable nodes.
This should probably be refixed with a special default Node that just
returns some "don't touch me" values.
Fixes PR9427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127263 91177308-0d34-0410-b5e6-96231b3b80d8
This change uses the MaxReorderWindow for both height and depth, which
tends to limit the negative effects of high register pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127203 91177308-0d34-0410-b5e6-96231b3b80d8
The coalescer can in very rare cases leave too large live intervals around after
rematerializing cheap-as-a-move instructions.
Linear scan doesn't really care, but live range splitting gets very confused
when a live range is killed by a ghost instruction.
I will fix this properly in the coalescer after 2.9 branches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127096 91177308-0d34-0410-b5e6-96231b3b80d8
regs. This is the only change in this checkin that may affects the
default scheduler. With better register tracking and heuristics, it
doesn't make sense to artificially lower the register limit so much.
Added -sched-high-latency-cycles and X86InstrInfo::isHighLatencyDef to
give the scheduler a way to account for div and sqrt on targets that
don't have an itinerary. It is currently defaults to 10 (the actual
number doesn't matter much), but only takes effect on non-default
schedulers: list-hybrid and list-ilp.
Added several heuristics that can be individually disabled for the
non-default sched=list-ilp mode. This helps us determine how much
better we can do on a given benchmark than the default
scheduler. Certain compute intensive loops run much faster in this
mode with the right set of heuristics, and it doesn't seem to have
much negative impact elsewhere. Not all of the heuristics are needed,
but we still need to experiment to decide which should be disabled by
default for sched=list-ilp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127067 91177308-0d34-0410-b5e6-96231b3b80d8
The global cost is the sum of block frequencies for spill code that must be
inserted because preferences weren't met.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127062 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies the code and makes it faster too.
The interference patterns are saved for each candidate register. It will be
reused for actually executing the split. Work in progress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127054 91177308-0d34-0410-b5e6-96231b3b80d8
It gives better results. Sometimes, a live range can be large and still have
high spill weight. Such a range should not be spilled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127036 91177308-0d34-0410-b5e6-96231b3b80d8
Initially, slot indexes are quad-spaced. There is room for inserting up to 3
new instructions between the original instructions.
When we run out of indexes between two instructions, renumber locally using
double-spaced indexes. The original quad-spacing means that we catch up quickly,
and we only have to renumber a handful of instructions to get a monotonic
sequence. This is much faster than renumbering the whole function as we did
before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127023 91177308-0d34-0410-b5e6-96231b3b80d8
You can't really predict how many indexes will be needed from the number of
defs, so let's keep it simple.
Also remove an extra empty index that was inserted after each basic block. It
was intended for live-out ranges, but it was never used that way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127014 91177308-0d34-0410-b5e6-96231b3b80d8
type after type legalization has completed. Before then it may simply not be big
enough to hold the shift amount, particularly on x86 which uses a very small type
for shifts (this issue broke stuff in the past which is why LegalizeTypes carefully
uses a large type for shift amounts).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127000 91177308-0d34-0410-b5e6-96231b3b80d8
Fix the PendingQueue, then disable it because it's not required for
the current schedulers' heuristics.
Fix the logic for the unused list-ilp scheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126981 91177308-0d34-0410-b5e6-96231b3b80d8
it. It's been assumed up til now that it would be in its immediate
successor. However, this isn't necessarily the case. It could be in one of its
successor's successors.
Modify the code to more thoroughly check for an 'eh.selector' call in
successors. It only looks at a successor if we get there as a result of an
unconditional branch.
Testcase ObjC/exceptions-4.m in r126968.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126969 91177308-0d34-0410-b5e6-96231b3b80d8
There are probably much larger speedups to be had by renumbering locally instead
of looping over the whole function. For now, the greedy register allocator is
25% faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126926 91177308-0d34-0410-b5e6-96231b3b80d8
This is much faster than using a pointer to a ManagedStatic object accessed with
a function call. The greedy register allocator is 5% faster overall just from
the SlotIndex default constructor savings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126925 91177308-0d34-0410-b5e6-96231b3b80d8
The SlotIndex created by the default construction does not represent a position
in the function, and it doesn't make sense to compare it to other indexes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126924 91177308-0d34-0410-b5e6-96231b3b80d8
We need to wait until we meet a PHIDef in its defining block before resurrecting
PHIKills in the predecessors.
This should unbreak the llvm-gcc-build-x86_64-darwin10-x-mingw32-x-armeabi bot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126905 91177308-0d34-0410-b5e6-96231b3b80d8
David Greene changed CannotYetSelect() to print the full DAG including multiple
copies of operands reached through different paths in the DAG. Unfortunately
this blows up exponentially in some cases. The depth limit of 100 is way too
high to prevent this -- I'm seeing a message string of 150MB with a depth of
only 40 in one particularly bad case, even though the DAG has less than 200
nodes. Part of the problem is that the printing code is following chain
operands, so if you fail to select an operation with a chain, the printer will
follow all the chained operations back to the entry node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126899 91177308-0d34-0410-b5e6-96231b3b80d8
Values that map to a single new value in a new interval after splitting don't
need new PHIDefs, and if the parent value was never rematerialized the live
range will be the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126894 91177308-0d34-0410-b5e6-96231b3b80d8
Extract the updateSSA() method from the too long extendRange().
LiveOutCache can be shared among all the new intervals since there is at most
one of the new ranges live out from each basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126818 91177308-0d34-0410-b5e6-96231b3b80d8
This method could probably be used by LiveIntervalAnalysis::shrinkToUses, and
now it can use extendIntervalEndTo() which coalesces ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126803 91177308-0d34-0410-b5e6-96231b3b80d8
The value map is currently not used, all values are 'complex mapped' and
LiveIntervalMap::mapValue is used to dig them out.
This is the first step in a series changes leading to the removal of
LiveIntervalMap. Its data structures can be shared among all the live intervals
created by a split, so it is wasteful to create a copy for each.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126800 91177308-0d34-0410-b5e6-96231b3b80d8
This is a waste of time since we already know how to evict all interferences
which is a better approach anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126798 91177308-0d34-0410-b5e6-96231b3b80d8
This effectively disables the 'turbo' functionality of the greedy register
allocator where all new live ranges created by splitting would be reconsidered
as if they were originals.
There are two reasons for doing this, 1. It guarantees that the algorithm
terminates. Early versions were prone to infinite looping in certain corner
cases. 2. It is a 2x speedup. We can skip a lot of unnecessary interference
checks that won't lead to good splitting anyway.
The problem is that region splitting only gets one shot, so it should probably
be changed to target multiple physical registers at once.
Local live range splitting is still 'turbo' enabled. It only accounts for a
small fraction of compile time, so it is probably not necessary to do anything
about that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126781 91177308-0d34-0410-b5e6-96231b3b80d8
1. Inform users of ADDEs with two 0 operands that it never sets carry
2. Fold other ADDs or ADDCs into the ADDE if possible
It would be neat if we could do the same thing for SETCC+ADD eventually, but we can't do that in target independent code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126557 91177308-0d34-0410-b5e6-96231b3b80d8
is possible to do better if the high bit is set in either KnownZero/KnownOne, but
in practice NumSignBits is always 1 when we are zero extending because nothing
is known about that register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126465 91177308-0d34-0410-b5e6-96231b3b80d8
New live ranges are assigned in long -> short order, but live ranges that have
been evicted at least once are deferred and assigned in short -> long order.
Also disable splitting and spilling for live ranges seen for the first time.
The intention is to create a realistic interference pattern from the heavy live
ranges before starting splitting and spilling around it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126451 91177308-0d34-0410-b5e6-96231b3b80d8
Limit the folding of any_ext and sext into the load operation to scalars.
Limit the active-bits trunc optimization to scalars.
Document vector trunc and vector sext in LangRef.
Similar to commit 126080 (for enabling zext).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126424 91177308-0d34-0410-b5e6-96231b3b80d8
The problem was codegen guessing the wrong values and printing
.section .eh_frame,"aMS",@progbits,4
It is not clear at all if Codegen should try to guess, MC is the
one that should know the default flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126421 91177308-0d34-0410-b5e6-96231b3b80d8
registers at phis. This enables us to eliminate a lot of pointless zexts during
the DAGCombine phase. This fixes <rdar://problem/8760114>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126380 91177308-0d34-0410-b5e6-96231b3b80d8
When a large live range is evicted, it will usually be split when it comes
around again. By deferring evicted live ranges, the splitting happens at a time
when the interference pattern is more realistic. This prevents repeated
splitting and evictions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126282 91177308-0d34-0410-b5e6-96231b3b80d8
Use interval sizes instead of spill weights to determine if it is legal to evict
interference. A smaller interval can evict interference if all interfering live
ranges are larger.
Allow multiple interferences to be evicted as along as they are all larger than
the live range being allocated.
Spill weights are still used to select the preferred eviction candidate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126276 91177308-0d34-0410-b5e6-96231b3b80d8
This is based on the observation that long live ranges are more difficult to
allocate, so there is a better chance of solving the puzzle by handling the big
pieces first. The allocator will evict and split long alive ranges when they get
in the way.
RABasic is still using spill weights for its priority queue, so the interface to
the queue has been virtualized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126259 91177308-0d34-0410-b5e6-96231b3b80d8
share entries. Add a DenseSet to MachineConstantPool for the MachineCPVs that
it owns.
This will hopefully fix the MC/ARM/elf-reloc-01.ll failure on the leaks bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126218 91177308-0d34-0410-b5e6-96231b3b80d8
at phis. This enables us to eliminate a lot of pointless zexts during the DAGCombine
phase. This fixes <rdar://problem/8760114>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126170 91177308-0d34-0410-b5e6-96231b3b80d8
In other words, do not keep track of argument's location. The debugger (gdb) is not prepared to see line table entries for arguments. For the debugger, "second" line table entry marks beginning of function body.
This requires some coordination with debugger to get this working.
- The debugger needs to be aware of prolog_end attribute attached with line table entries.
- The compiler needs to accurately mark prolog_end in line table entries (at -O0 and at -O1+)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126155 91177308-0d34-0410-b5e6-96231b3b80d8
An original endpoint is an instruction that killed or defined the original live
range before any live ranges were split.
When splitting global live ranges, avoid creating local live ranges without any
original endpoints. We may still create global live ranges without original
endpoints, but such a range won't be split again, and live range splitting still
terminates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126151 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner folds the zext into complex load instructions. This patch
prevents this optimization on vectors since none of the supported targets
knows how to perform load+vector_zext in one instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126080 91177308-0d34-0410-b5e6-96231b3b80d8
The rewriter works almost identically to -rewriter=trivial, except it also
eliminates any identity copies.
This makes the new register allocators independent of VirtRegRewriter.cpp which
will be going away at the same time as RegAllocLinearScan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125967 91177308-0d34-0410-b5e6-96231b3b80d8
A local live range is live in a single basic block. If such a range fails to
allocate, try to find a sub-range that would get a larger spill weight than its
interference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125764 91177308-0d34-0410-b5e6-96231b3b80d8
the time but presumably my email got lost). Examples where the previous logic
got it wrong: (1) a signed i8 multiply of 64 by 2 overflows, but the high part is
zero; (2) a signed i8 multiple of -128 by 2 overflows, but the high part is all
ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125748 91177308-0d34-0410-b5e6-96231b3b80d8
transformation if we can't legally create a build vector of the correct
type. Check that we can make the transformation first, and add a TODO to
refactor this code with similar cases.
Fixes: PR9223 and rdar://9000350
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125631 91177308-0d34-0410-b5e6-96231b3b80d8
Machine instruction range consisting of only DBG_VALUE MIs only contributes consecutive labels in assembly output, which is harmless, and empty scope entry in DebugInfo, which confuses debugger tools.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125577 91177308-0d34-0410-b5e6-96231b3b80d8
Simplify the spill weight calculation a bit by bypassing
getApproximateInstructionCount() and using LiveInterval::getSize() directly.
This changes the computed spill weights, but only by a constant factor in each
function. It should not affect how spill weights compare against each other, and
so it shouldn't affect code generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125530 91177308-0d34-0410-b5e6-96231b3b80d8
have their low bits set to zero. This allows us to optimize
out explicit stack alignment code like in stack-align.ll:test4 when
it is redundant.
Doing this causes the code generator to start turning FI+cst into
FI|cst all over the place, which is general goodness (that is the
canonical form) except that various pieces of the code generator
don't handle OR aggressively. Fix this by introducing a new
SelectionDAG::isBaseWithConstantOffset predicate, and using it
in places that are looking for ADD(X,CST). The ARM backend in
particular was missing a lot of addressing mode folding opportunities
around OR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125470 91177308-0d34-0410-b5e6-96231b3b80d8
generating i8 shift amounts for things like i1024 types. Add
an assert in getNode to prevent this from occuring in the future,
fix the buggy transformation, revert my previous patch, and
document this gotcha in ISDOpcodes.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125465 91177308-0d34-0410-b5e6-96231b3b80d8
the shift amounts are in a suitably wide type so that
we don't generate out of range constant shift amounts.
This fixes PR9028.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125458 91177308-0d34-0410-b5e6-96231b3b80d8
is narrower than the shift register. Doing an anyext provides undefined bits in
the top part of the register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125457 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner created illegal BUILD_VECTOR operations.
The patch added a check that either illegal operations are
allowed or that the created operation is legal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125435 91177308-0d34-0410-b5e6-96231b3b80d8
The bug happens when the DAGCombiner attempts to optimize one of the patterns
of the SUB opcode. It tries to create a zero of type v2i64. This type is legal
on 32bit machines, but the initializer of this vector (i64) is target dependent.
Currently, the initializer attempts to create an i64 zero constant, which fails.
Added a flag to tell the DAGCombiner to create a legal zero, if we require that
the pass would generate legal types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125391 91177308-0d34-0410-b5e6-96231b3b80d8
Loop splitting is better handled by the more generic global region splitting
based on the edge bundle graph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125243 91177308-0d34-0410-b5e6-96231b3b80d8
The tag is updated whenever the live interval union is changed, and it is tested
before using cached information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125224 91177308-0d34-0410-b5e6-96231b3b80d8