Commit Graph

1012 Commits

Author SHA1 Message Date
Robin Morisset
83e571e7ba [Power] Delete redundant test Atomics-32.ll
The test Atomics-32.ll was both redundant (all operations are also checked by
atomics.ll at least) and not actually checking correctness (it was not using
FileCheck, just verifying that the compiler does not crash).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218997 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 18:10:07 +00:00
Robin Morisset
8e2b2ae80e [Power] Use lwsync for non-seq_cst fences
Summary:
hwsync is only required for seq_cst fences, acquire and release one can use
the cheaper lwsync.

Test Plan: Added some cases to atomics.ll + make check-all

Reviewers: jfb, wschmidt

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5317

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218995 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 18:04:36 +00:00
Hal Finkel
626236d9bc [PowerPC] Modern Book-E cores support sync
Older Book-E cores, such as the PPC 440, support only msync (which has the same
encoding as sync 0), but not any of the other sync forms. Newer Book-E cores,
however, do support sync, and for performance reasons we should allow the use
of the more-general form.

This refactors msync use into its own feature group so that it applies by
default only to older Book-E cores (of the relevant cores, we only have
definitions for the PPC440/450 currently).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218923 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 22:34:22 +00:00
Robin Morisset
2b1874cbd4 [Power] Improve the expansion of atomic loads/stores
Summary:
Atomic loads and store of up to the native size (32 bits, or 64 for PPC64)
can be lowered to a simple load or store instruction (as the synchronization
is already handled by AtomicExpand, and the atomicity is guaranteed thanks to
the alignment requirements of atomic accesses). This is exactly what this patch
does. Previously, these were implemented by complex
load-linked/store-conditional loops.. an obvious performance problem.

For example, this patch turns
```
define void @store_i8_unordered(i8* %mem) {
  store atomic i8 42, i8* %mem unordered, align 1
  ret void
}
```
from
```
_store_i8_unordered:                    ; @store_i8_unordered
; BB#0:
    rlwinm r2, r3, 3, 27, 28
    li r4, 42
    xori r5, r2, 24
    rlwinm r2, r3, 0, 0, 29
    li r3, 255
    slw r4, r4, r5
    slw r3, r3, r5
    and r4, r4, r3
LBB4_1:                                 ; =>This Inner Loop Header: Depth=1
    lwarx r5, 0, r2
    andc r5, r5, r3
    or r5, r4, r5
    stwcx. r5, 0, r2
    bne cr0, LBB4_1
; BB#2:
    blr
```
into
```
_store_i8_unordered:                    ; @store_i8_unordered
; BB#0:
    li r2, 42
    stb r2, 0(r3)
    blr

```
which looks like a pretty clear win to me.

Test Plan:
fixed the tests + new test for indexed accesses + make check-all

Reviewers: jfb, wschmidt, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5587

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218922 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 22:27:07 +00:00
Duncan P. N. Exon Smith
32e192aeb3 Revert "DI: Fold constant arguments into a single MDString"
This reverts commit r218914 while I investigate some bots.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218918 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 22:15:31 +00:00
Duncan P. N. Exon Smith
0917b70630 DI: Fold constant arguments into a single MDString
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 21:56:57 +00:00
Adrian Prantl
02474a32eb Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
Adrian Prantl
10c4265675 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218782 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:10:54 +00:00
Adrian Prantl
076fd5dfc1 Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 17:55:39 +00:00
Sanjay Patel
676af35b38 Refactor reciprocal and reciprocal square root estimate into target-independent functions (part 2).
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.

The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:

z = y / sqrt(x)

into:

z = y * rsqrte(x)

And:

z = y / x

into:

z = y * rcpe(x)

using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .

There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.

Differential Revision: http://reviews.llvm.org/D5484



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218553 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-26 23:01:47 +00:00
Robin Morisset
58bca6e8ec [Power] Use AtomicExpandPass for fence insertion, and use lwsync where appropriate
Summary:
This patch makes use of AtomicExpandPass in Power for inserting fences around
atomic as part of an effort to remove fence insertion from SelectionDAGBuilder.
As a big bonus, it lets us use sync 1 (lightweight sync, often used by the mnemonic
lwsync) instead of sync 0 (heavyweight sync) in many cases.

I also added a test, as there was no test for the barriers emitted by the Power
backend for atomic loads and stores.

Test Plan: new test + make check-all

Reviewers: jfb

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5180

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218331 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-23 20:46:49 +00:00
Sanjay Patel
c4ef4e47c2 tighten up checks
We manage to generate all of the matching instructions (and a lot more) via
the reciprocal optimization function - even if we completely remove the square
root optimization. With CHECK_NEXT, we assure that we're executing the
expected square root optimization paths and not generating extra insts.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218284 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-22 22:46:44 +00:00
Sanjay Patel
90969b9ee0 remove unnecessary labels; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218278 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-22 21:52:53 +00:00
Hal Finkel
c404e8208c Optionally enable more-aggressive FMA formation in DAGCombine
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.

Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.

Patch by Olivier Sallenave, thanks!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218120 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-19 11:42:56 +00:00
Samuel Antao
6693d0de3e Fix FastISel bug in boolean returns for PowerPC.
For PPC targets, FastISel does not take the sign extension information into account when selecting return instructions whose operands are constants. A consequence of this is that the return of boolean values is not correct. This patch fixes the problem by evaluating the sign extension information also for constants, forwarding this information to PPCMaterializeInt which takes this information to drive the sign extension during the materialization. 



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217993 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-17 23:25:06 +00:00
Rafael Espindola
d41a46e942 Add back tests for empty function in SPARC and PowerPC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217834 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 22:11:07 +00:00
Rafael Espindola
3f0ce4fa18 Fix a lot of confusion around inserting nops on empty functions.
On MachO, and MachO only, we cannot have a truly empty function since that
breaks the linker logic for atomizing the section.

When we are emitting a frame pointer, the presence of an unreachable will
create a cfi instruction pointing past the last instruction. This is perfectly
fine. The FDE information encodes the pc range it applies to. If some tool
cannot handle this, we should explicitly say which bug we are working around
and only work around it when it is actually relevant (not for ELF for example).

Given the unreachable we could omit the .cfi_def_cfa_register, but then
again, we could also omit the entire function prologue if we wanted to.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217801 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 18:32:58 +00:00
Bill Schmidt
183704cb08 Address comments on r217622
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217680 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-12 14:26:36 +00:00
Bill Schmidt
d4604dca94 Add missing colon to RUN line...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217623 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-11 20:13:52 +00:00
Bill Schmidt
24ebd0edd6 [PATCH, PowerPC] Accept 'U' and 'X' constraints in inline asm
Inline asm may specify 'U' and 'X' constraints to print a 'u' for an
update-form memory reference, or an 'x' for an indexed-form memory
reference.  However, these are really only useful in GCC internal code
generation.  In inline asm the operand of the memory constraint is
typically just a register containing the address, so 'U' and 'X' make
no sense.

This patch quietly accepts 'U' and 'X' in inline asm patterns, but
otherwise does nothing.  If we ever unexpectedly see a non-register,
we'll assert and sort it out afterwards.

I've added a new test for these constraints; the test case should be
used for other asm-constraints changes down the road.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217622 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-11 20:10:03 +00:00
Hal Finkel
2633f795c6 Enable splitting indexing from loads with TargetConstants
When I recommitted r208640 (in r216898) I added an exclusion for TargetConstant
offsets, as there is no guarantee that a backend can handle them on generic
ADDs (even if it generates them during address-mode matching) -- and,
specifically, applying this transformation directly with TargetConstants caused
a self-hosting failure on PPC64. Ignoring all TargetConstants, however, is less
than ideal. Instead, for non-opaque constants, we can convert them into regular
constants for use with the generated ADD (or SUB).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216908 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-02 16:05:23 +00:00
Hal Finkel
7ca2a7d742 [PowerPC] Add support for dcbtst and icbt (prefetch)
Adds code generation support for dcbtst (data cache prefetch for write) and
icbt (instruction cache prefetch for read - Book E cores only).

We still end up with a 'cannot select' error for the non-supported prefetch
intrinsic forms. This will be fixed in a later commit.

Fixes PR20692.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216339 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-23 23:21:04 +00:00
Juergen Ributzka
f08cddcf56 Reapply [FastISel] Let the target decide first if it wants to materialize a constant (215588).
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.

I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.

Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.

On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.

On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.

On ARM it would generate unnecessary mov instructions or not use mvn.

This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.

Related to <rdar://problem/17420988>.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216006 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-19 19:05:24 +00:00
Hal Finkel
5dc48ac04a [PowerPC] Mark fixed-offset byvals as pointed-to by IR values
A byval object, even if allocated at a fixed offset (prescribed by the ABI) is
pointed to by IR values. Most fixed-offset stack objects are not pointed-to by
IR values, so the default is to assume this is not possible. However, we need
to override the default in this case (instruction scheduling can cause
miscompiles otherwise).

Fixes PR20280.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215795 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-16 00:17:05 +00:00
Bill Schmidt
44beebe8de [PPC64] Add test case for r215685.
I had deferred adding this test case until I could get it down to a
reasonable size.  That's done now.

Thanks,
Bill


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215711 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-15 13:51:57 +00:00
Juergen Ributzka
6398a7f5fd Revert several FastISel commits to track down a buildbot error.
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215673 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-14 19:56:28 +00:00
Juergen Ributzka
eb1c51f8b3 [FastISel] Let the target decide first if it wants to materialize a constant.
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.

On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.

On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.

On ARM it would generate unnecessary mov instructions or not use mvn.

This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.

Related to <rdar://problem/17420988>.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215588 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 22:08:02 +00:00
Hal Finkel
e693d3c558 [PowerPC] Implement PPCTargetLowering::getTgtMemIntrinsic
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).

This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215512 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 01:15:40 +00:00
Hal Finkel
695e914c03 Fix classof for ISD::INTRINSIC_W_CHAIN and INTRINSIC_VOID
Unfortunately, our use of the SDNode class hierarchy for INTRINSIC_W_CHAIN and
INTRINSIC_VOID nodes is somewhat broken right now. These nodes sometimes are
used for memory intrinsics (those with MachineMemOperands), and sometimes not.
When not, the nodes are not created as instances of MemIntrinsicSDNode, but
rather created as some other subclass of SDNode using DAG::getNode. When they
are memory intrinsics, they are created using DAG::getMemIntrinsicNode as
instances of MemIntrinsicSDNode. MemIntrinsicSDNode is a subclass of
MemSDNode, but prior to r214452, we had a non-self-consistent setup whereby
MemIntrinsicSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID would
return true but MemSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID
would return false. In r214452, MemSDNode::classof was changed to return true
for INTRINSIC_W_CHAIN and INTRINSIC_VOID, which is now self-consistent. The
problem is that neither the pre-r214452 logic and the post-r214452 logic are
really right. The truth is that not all INTRINSIC_W_CHAIN and INTRINSIC_VOID
nodes are instances of MemIntrinsicSDNode (or MemSDNode for that matter), and
the return value from classof needs to reflect that. This was broken before
r214452 (because MemIntrinsicSDNode::classof always returned true), and was
broken afterward (because MemSDNode::classof also always returned true), and
will now be correct.

The minimal solution is to grab one of the SubclassData bits (there is one left
for MemIntrinsicSDNode nodes) and use it to store whether or not a particular
INTRINSIC_W_CHAIN or INTRINSIC_VOID is really an instance of
MemIntrinsicSDNode or not. Doing this allows both MemIntrinsicSDNode::classof
and MemSDNode::classof to return the correct answer for the underlying object
for both the memory-intrinsic and non-memory-intrinsic cases.

This fixes the problem that r214452 created in the SelectionDAGDumper (thanks
to Matt Arsenault for pointing it out).

Because PowerPC does not implement getTgtMemIntrinsic, this change breaks
test/CodeGen/PowerPC/unal-altivec-wint.ll. I've XFAILed it for now, and will
fix it in a follow-up commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215511 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 01:15:37 +00:00
Joerg Sonnenberger
f0b70e2fbc Provide an implementation of getNoopForMachoTarget for PPC, otherwise
empty functions will assert in the MC object writer.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215238 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-08 19:13:23 +00:00
Bill Schmidt
bb639a1f96 [PowerPC] Swap arguments and adjust shift count for vsldoi on little endian
Commits r213915 and r214718 fix recognition of shuffle masks for vmrg*
and vpku*um instructions for a little-endian target, by swapping the
input arguments.  The vsldoi instruction requires similar treatment,
and also needs its shift count adjusted for little endian.

Reviewed by Ulrich Weigand.

This is a bug fix candidate for release 3.5 (and hopefully the last of
those for PowerPC).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214923 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-05 20:47:25 +00:00
Bill Schmidt
84fef1f55d [PPC64LE] Fix wrong IR for vec_sld and vec_vsldoi
My original LE implementation of the vsldoi instruction, with its
altivec.h interfaces vec_sld and vec_vsldoi, produces incorrect
shufflevector operations in the LLVM IR.  Correct code is generated
because the back end handles the incorrect shufflevector in a
consistent manner.

This patch and a companion patch for Clang correct this problem by
removing the fixup from altivec.h and the corresponding fixup from the
PowerPC back end.  Several test cases are also modified to reflect the
now-correct LLVM IR.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214800 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 23:21:01 +00:00
Joerg Sonnenberger
a770bd6cae MC uses .lcomm now, so adjust.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214776 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 21:06:00 +00:00
Ulrich Weigand
29ec7479a1 [PowerPC] Add target triple to vec_urem_const.ll test case
This should hopefully fix build bots on other architectures.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214721 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 14:55:26 +00:00
Ulrich Weigand
c568629589 [PowerPC] Swap arguments to vpkuhum/vpkuwum on little-endian
In commit r213915, Bill fixed little-endian usage of vmrgh* and vmrgl*
by swapping the input arguments.  As it turns out, the exact same fix
is also required for the vpkuhum/vpkuwum patterns.

This fixes another regression in llvmpipe when vector support is
enabled.

Reviewed by Bill Schmidt.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214718 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 13:53:40 +00:00
Ulrich Weigand
d5e9497c88 [PowerPC] MULHU/MULHS are not legal for vector types
I ran into some test failures where common code changed vector division
by constant into a multiply-high operation (MULHU).  But these are not
implemented by the back-end, so we failed to recognize the insn.

Fixed by marking MULHU/MULHS as Expand for vector types.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214716 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 13:27:12 +00:00
Ulrich Weigand
3b7a193521 [PowerPC] Fix and improve vector comparisons
This patch refactors code generation of vector comparisons.

This fixes a wrong code-gen bug for ISD::SETGE for floating-point types,
and improves generated code for vector comparisons in general.

Specifically, the patch moves all logic deciding how to implement vector
comparisons into getVCmpInst, which gets two extra boolean outputs
indicating to its caller whether its needs to swap the input operands
and/or negate the result of the comparison.  Apart from implementing
these two modifications as directed by getVCmpInst, there is no need
to ever implement vector comparisons in any other manner; in particular,
there is never a need to perform two separate comparisons (e.g. one for
equal and one for greater-than, as code used to do before this patch).

Reviewed by Bill Schmidt.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214714 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-04 13:13:57 +00:00
Hal Finkel
bcaf5e176a [PowerPC] Recognize consecutive memory accesses from intrinsics
When generating unaligned vector loads, we need to search for other loads or
stores nearby offset by one vector width. If we find one, then we know that we
can safely generate another aligned load at that address. Otherwise, we must
generate the next load using an offset of the vector width minus one byte (so
we don't read off the end of the allocation if the base unaligned address
happened to be aligned at runtime). We had previously done this using only
other vector loads and stores, but did not consider the PowerPC-specific vector
load/store intrinsics. Now we'll also consider vector intrinsics. By itself,
this change is a feature enhancement, but is a necessary step toward fixing the
underlying problem behind PR19991.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214469 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-01 01:02:01 +00:00
Will Schmidt
723bdb5e3f Disable IsSub subregister assert. pr18663.
This is a follow-up to the activity in the bug at
http://llvm.org/bugs/show_bug.cgi?id=18663 .  The underlying issue has
to do with how the KILL pseudo-instruction is handled.  I defer to
Hal/Jakob/Uli for additional details and background.

This will disable the (bad?) assert, add an associated fixme comment,
and add a pair of tests.

The code change and the pr18663-2.ll test are copied from the referenced
bug.  That test does not immediately fail in my environment, but I have
added the pr18663.ll test which does.

(Comment from Hal)
to provide everyone else with some context, this assert was not bad when
it was written. At that time, we only generated KILL pseudo instructions
around subregister copies. This logic, unfortunately, had its own problems.
In r199797, the relevant logic in MachineCopyPropagation was replaced to
generate KILLs for other kinds of copies too. This change in semantics broke
this now-problematic assumption in AggressiveAntiDepBreaker. The
AggressiveAntiDepBreaker really needs a proper cleanup to deal with the
change, but removing the assert (which just allows the function to return
false) is a safe conservative behavior, and should do for the time being.






git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214429 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-31 19:50:53 +00:00
Hal Finkel
50c05c91f9 Fix ScalarEvolutionExpander when creating a PHI in a block with duplicate predecessors
It seems that when I fixed this, almost exactly a year ago, I did not quite do
it correctly. When we have duplicate block predecessors, we can indeed not have
different incoming values for the same block, but we *must* have duplicate
entries. So, instead of skipping the duplicates, we explicitly add the
duplicate incoming values.

Fixes PR20442.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214423 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-31 19:13:38 +00:00
Ulrich Weigand
5a0979e149 [PowerPC] Fix ppc64-elf-abi.ll test case on Darwin
Use full -mtriple instead of just -march to ensure Linux ABI
(ELFv1 or ELFv2) is selected.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214179 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-29 12:48:14 +00:00
Ulrich Weigand
225048baf8 [PowerPC] Add testcase forgotten in the 214072 commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214073 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-28 13:10:25 +00:00
Hal Finkel
e9b6201f4d [PowerPC] Support TLS on PPC32/ELF
Patch by Justin Hibbits!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213960 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-25 17:47:22 +00:00
Bill Schmidt
2286ae542c [PATCH][PPC64LE] Correct little-endian usage of vmrgh* and vmrgl*.
Because the PowerPC vmrgh* and vmrgl* instructions have a built-in
big-endian bias, it is necessary to swap their inputs in little-endian
mode when using them to implement a vector shuffle.  This was
previously missed in the vector LE implementation.

There was already logic to distinguish between unary and "normal"
vmrg* vector shuffles, so this patch extends that logic to use a third
option:  "swapped" vmrg* vector shuffles that are used for little
endian in place of the "normal" ones.

I've updated the vec-shuffle-le.ll test to check for the expected
register ordering on the generated instructions.

This bug was discovered when testing the LE and ELFv2 patches for
safety if they were backported to 3.4.  A different vectorization
decision was made in 3.4 than on mainline trunk, and that exposed the
problem.  I've verified this fix takes care of that issue.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213915 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-25 01:55:55 +00:00
Joerg Sonnenberger
86854be8b1 Don't use 128bit functions on PPC32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213899 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-24 22:20:10 +00:00
Chandler Carruth
a6425604c2 [SDAG] Make the DAGCombine worklist not grow endlessly due to duplicate
insertions.

The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).

This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.

A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.

I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.

Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.

Differential Revision: http://reviews.llvm.org/D4616

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213727 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-23 07:08:53 +00:00
Ulrich Weigand
d4542a8cdc [PowerPC] ELFv2 aggregate passing support
This patch adds infrastructure support for passing array types
directly.  These can be used by the front-end to pass aggregate
types (coerced to an appropriate array type).  The details of the
array type being used inform the back-end about ABI-relevant
properties.  Specifically, the array element type encodes:
- whether the parameter should be passed in FPRs, VRs, or just
  GPRs/stack slots  (for float / vector / integer element types,
  respectively)
- what the alignment requirements of the parameter are when passed in
  GPRs/stack slots  (8 for float / 16 for vector / the element type
  size for integer element types) -- this corresponds to the
  "byval align" field

Using the infrastructure provided by this patch, a companion patch
to clang will enable two features:
- In the ELFv2 ABI, pass (and return) "homogeneous" floating-point
  or vector aggregates in FPRs and VRs (this is similar to the ARM
  homogeneous aggregate ABI)
- As an optimization for both ELFv1 and ELFv2 ABIs, pass aggregates
  that fit fully in registers without using the "byval" mechanism

The patch uses the functionArgumentNeedsConsecutiveRegisters callback
to encode that special treatment is required for all directly-passed
array types.  The isInConsecutiveRegs / isInConsecutiveRegsLast bits set
as a results are then used to implement the required size and alignment
rules in CalculateStackSlotSize / CalculateStackSlotAlignment etc.

As a related change, the ABI routines have to be modified to support
passing floating-point types in GPRs.  This is necessary because with
homogeneous aggregates of 4-byte float type we can now run out of FPRs
*before* we run out of the 64-byte argument save area that is shadowed
by GPRs.  Any extra floating-point arguments that no longer fit in FPRs
must now be passed in GPRs until we run out of those too.

Note that there was already code to pass floating-point arguments in
GPRs used with vararg parameters, which was done by writing the argument
out to the argument save area first and then reloading into GPRs.  The
patch re-implements this, however, in favor of code packing float arguments
directly via extension/truncation, BITCAST, and BUILD_PAIR operations.

This is required to support the ELFv2 ABI, since we cannot unconditionally
write to the argument save area (which the caller might not have allocated).
The change does, however, affect ELFv1 varags routines too; but even here
the overall effect should be advantageous: Instead of loading the argument
into the FPR, then storing the argument to the stack slot, and finally
reloading the argument from the stack slot into a GPR, the new code now
just loads the argument into the FPR, and subsequently loads the argument
into the GPR (via BITCAST).  That BITCAST might imply a save/reload from
a stack temporary (in which case we're no worse than before); but it
might be implemented more efficiently in some cases.

The final part of the patch enables up to 8 FPRs and VRs for argument
return in PPCCallingConv.td; this is required to support returning
ELFv2 homogeneous aggregates.  (Note that this doesn't affect other ABIs
since LLVM wil only look for which register to use if the parameter is
marked as "direct" return anyway.)

Reviewed by Hal Finkel.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213493 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-21 00:13:26 +00:00
Ulrich Weigand
970c019d02 [PowerPC] ELFv2 explicit CFI for CR fields
This is a minor improvement in the ELFv2 ABI.   In ELFv1, DWARF CFI
would represent a saved CR word (holding CR fields CR2, CR3, and CR4)
using just a single CFI record refering to CR2.   In ELFv2 instead,
each of the CR fields is represented by its own CFI record.  The
advantage is that the compiler can now chose to save just a single
(or two) CR fields instead of all of them, if those are the only ones
that actually need saving.  That can lead to more efficient code using
mf(o)crf instead of the (slow) mfcr instruction.

Note that this patch does not (yet) implement this more efficient
code generation, but it does implement the part that is required to
be ABI compliant: creating multiple CFI records if multiple CR fields
are saved.

Reviewed by Hal Finkel.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213492 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-21 00:03:18 +00:00
Ulrich Weigand
7fc5011e8d [PowerPC] ELFv2 stack space reduction
The ELFv2 ABI reduces the amount of stack required to implement an
ABI-compliant function call in two ways:
* the "linkage area" is reduced from 48 bytes to 32 bytes by
  eliminating two unused doublewords
* the 64-byte "parameter save area" is now optional and need not be
  present in certain cases (it remains mandatory in functions with
  variable arguments, and functions that have any parameter that is
  passed on the stack)

The following patch implements this required changes:
- reducing the linkage area, and associated relocation of the TOC save
  slot, in getLinkageSize / getTOCSaveOffset (this requires updating all
  callers of these routines to pass in the isELFv2ABI flag).
- (partially) handling the case where the parameter save are is optional

This latter part requires some extra explanation:  Currently, we still
always allocate the parameter save area when *calling* a function.
That is certainly always compliant with the ABI, but may cause code to
allocate stack unnecessarily.  This can be addressed by a follow-on
optimization patch.

On the *callee* side, in LowerFormalArguments, we *must* track
correctly whether the ABI guarantees that the caller has allocated
the parameter save area for our use, and the patch does so. However,
there is one complication: the code that handles incoming "byval"
arguments will currently *always* write to the parameter save area,
because it has to force incoming register arguments to the stack since
it must return an *address* to implement the byval semantics.

To fix this, the patch changes the LowerFormalArguments code to write
arguments to a freshly allocated stack slot on the function's own stack
frame instead of the argument save area in those cases where that area
is not present.

Reviewed by Hal Finkel.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213490 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-20 23:43:15 +00:00
Ulrich Weigand
edfd4f18bc [PowerPC] ELFv2 function call changes
This patch builds upon the two preceding MC changes to implement the
basic ELFv2 function call convention.  In the ELFv1 ABI, a "function
descriptor" was associated with every function, pointing to both the
entry address and the related TOC base (and a static chain pointer
for nested functions).  Function pointers would actually refer to that
descriptor, and the indirect call sequence needed to load up both entry
address and TOC base.

In the ELFv2 ABI, there are no more function descriptors, and function
pointers simply refer to the (global) entry point of the function code.
Indirect function calls simply branch to that address, after loading it
up into r12 (as required by the ABI rules for a global entry point).
Direct function calls continue to just do a "bl" to the target symbol;
this will be resolved by the linker to the local entry point of the
target function if it is local, and to a PLT stub if it is global.
That PLT stub would then load the (global) entry point address of the
final target into r12 and branch to it.  Note that when performing a
local function call, r2 must be set up to point to the current TOC
base: if the target ends up local, the ABI requires that its local
entry point is called with r2 set up; if the target ends up global,
the PLT stub requires that r2 is set up.

This patch implements all LLVM changes to implement that scheme:
- No longer create a function descriptor when emitting a function
  definition (in EmitFunctionEntryLabel)
- Emit two entry points *if* the function needs the TOC base (r2)
  anywhere (this is done EmitFunctionBodyStart; note that this cannot
  be done in EmitFunctionBodyStart because the global entry point
  prologue code must be *part* of the function as covered by debug info).
- In order to make use tracking of r2 (as needed above) work correctly,
  mark direct function calls as implicitly using r2.
- Implement the ELFv2 indirect function call sequence (no function
  descriptors; load target address into r12).
- When creating an ELFv2 object file, emit the .abiversion 2 directive
  to tell the linker to create the appropriate version of PLT stubs.  

Reviewed by Hal Finkel.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213489 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-20 23:31:44 +00:00