are from debug info. Add an iterator to MachineRegisterInfo
to skip Debug operands when walking the use list. No
functional change yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95473 91177308-0d34-0410-b5e6-96231b3b80d8
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82794 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74518 91177308-0d34-0410-b5e6-96231b3b80d8
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
the frame reference. This will help post-RA scheduling determine
that spills to distinct stack slots are independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60486 91177308-0d34-0410-b5e6-96231b3b80d8
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57748 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantFP* instead of APInt and APFloat directly.
This reduces the amount of time to create ConstantSDNode
and ConstantFPSDNode nodes when ConstantInt* and ConstantFP*
respectively are already available, as is the case in
SelectionDAGBuild.cpp. Also, it reduces the amount of time
to legalize constants into constant pools, and the amount of
time to add ConstantFP operands to MachineInstrs, due to
eliminating ConstantInt::get and ConstantFP::get calls.
It increases the amount of work needed to create new constants
in cases where the client doesn't already have a ConstantInt*
or ConstantFP*, such as legalize expanding 64-bit integer constants
to 32-bit constants. And it adds a layer of indirection for the
accessor methods. But these appear to be outweight by the benefits
in most cases.
It will also make it easier to make ConstantSDNode and
ConstantFPNode more consistent with ConstantInt and ConstantFP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56162 91177308-0d34-0410-b5e6-96231b3b80d8
MachineMemOperands. The pools are owned by MachineFunctions.
This drastically reduces the number of calls to malloc/free made
during the "Emit" phase of scheduling, as well as later phases
in CodeGen. Combined with other changes, this speeds up the
"instruction selection" phase of CodeGen by 10% in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53212 91177308-0d34-0410-b5e6-96231b3b80d8
initializer problem, a minor tweak to the way the
DAGISelEmitter finds load/store nodes, and a renaming of the
new PseudoSourceValue objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46827 91177308-0d34-0410-b5e6-96231b3b80d8
in the backend. Introduce a new SDNode type, MemOperandSDNode, for
holding a MemOperand in the SelectionDAG IR, and add a MemOperand
list to MachineInstr, and code to manage them. Remove the offset
field from SrcValueSDNode; uses of SrcValueSDNode that were using
it are all all using MemOperandSDNode now.
Also, begin updating some getLoad and getStore calls to use the
PseudoSourceValue objects.
Most of this was written by Florian Brander, some
reorganization and updating to TOT by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46585 91177308-0d34-0410-b5e6-96231b3b80d8
MachineOperand auxInfo. Previous clunky implementation uses an external map
to track sub-register uses. That works because register allocator uses
a new virtual register for each spilled use. With interval splitting (coming
soon), we may have multiple uses of the same register some of which are
of using different sub-registers from others. It's too fragile to constantly
update the information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44104 91177308-0d34-0410-b5e6-96231b3b80d8