When the operand is a plain immediate rather than a label, print it
as [pc, #imm] like we do for the Thumb2 wide encoding variant.
rdar://12154503
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166991 91177308-0d34-0410-b5e6-96231b3b80d8
We will make them delay slot forms if there is something that can be
placed in the delay slot during a separate pass. Mips16 extended instructions
cannot be placed in delay slots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166990 91177308-0d34-0410-b5e6-96231b3b80d8
is 24 bits not 20 and the decoding needed to correctly handle converting the
J1 and J2 bits to their I1 and I2 values to reconstruct the displacement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166982 91177308-0d34-0410-b5e6-96231b3b80d8
ELF ABI.
A varargs parameter consisting of a single-precision floating-point value,
or of a single-element aggregate containing a single-precision floating-point
value, must be passed in the low-order (rightmost) four bytes of the
doubleword stack slot reserved for that parameter. If there are GPR protocol
registers remaining, the parameter must also be mirrored in the low-order
four bytes of the reserved GPR.
Prior to this patch, such parameters were being passed in the high-order
four bytes of the stack slot and the mirrored GPR.
The patch adds a new test case to verify the correct code generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166968 91177308-0d34-0410-b5e6-96231b3b80d8
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166958 91177308-0d34-0410-b5e6-96231b3b80d8
treating it as if it were an IEEE floating-point type with 106-bit
mantissa.
This makes compile-time arithmetic on "long double" for PowerPC
in clang (in particular parsing of floating point constants)
work, and fixes all "long double" related failures in the test
suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166951 91177308-0d34-0410-b5e6-96231b3b80d8
Partial copies can show up even when CoalescerPair.isPartial() returns
false. For example:
%vreg24:dsub_0<def> = COPY %vreg31:dsub_0; QPR:%vreg24,%vreg31
Such a partial-partial copy is not good enough for the transformation
adjustCopiesBackFrom() needs to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166944 91177308-0d34-0410-b5e6-96231b3b80d8
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166939 91177308-0d34-0410-b5e6-96231b3b80d8
We may need to change the way profile counter values are stored, but
saturation is the wrong thing to do. Just remove it for now.
Patch by Alastair Murray!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166938 91177308-0d34-0410-b5e6-96231b3b80d8
incorrect instruction sequence due to it not being aware that an
inline assembly instruction may reference memory.
This patch fixes the problem by causing the scheduler to always assume that any
inline assembly code instruction could access memory. This is necessary because
the internal representation of the inline instruction does not include
any information about memory accesses.
This should fix PR13504.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166929 91177308-0d34-0410-b5e6-96231b3b80d8
ELF subtarget.
The existing logic is used as a fallback to avoid any changes to the Darwin
ABI. PPC64 ELF now has two possible data layout strings: one for FreeBSD,
which requires 8-byte alignment, and a default string that requires
16-byte alignment.
I've added a test for PPC64 Linux to verify the 16-byte alignment. If
somebody wants to add a separate test for FreeBSD, that would be great.
Note that there is a companion patch to update the alignment information
in Clang, which I am committing now as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166928 91177308-0d34-0410-b5e6-96231b3b80d8
split module can see each other. If it is keeping a symbol that already has
a non local linkage, it doesn't need to change it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166908 91177308-0d34-0410-b5e6-96231b3b80d8
output of both
llvm-extract foo.ll -func=bar
and
llvm-extract foo.ll -func=bar -delete
so the two new files could not be linked together anymore. With this change
alias are handled almost like functions and global variables. Almost because
with alias we cannot just clear the initializer/body, we have to create a new
declaration and replace the alias with it.
The net result is that now the output of the above commands can be linked
even if foo.ll has aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166907 91177308-0d34-0410-b5e6-96231b3b80d8