If whole quad mode isn't enabled for these, the level of detail is
calculated incorrectly for pixels along diagonal triangle edges, causing
artifacts.
v2: Use a TSFlag instead of lots of switch cases
v3: Add test coverage
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=88642
Reviewed-by: Tom Stellard <tom@stellard.net>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228372 91177308-0d34-0410-b5e6-96231b3b80d8
v2: modify hasVALU32BitEncoding instead
v3: - add pseudoToMCOpcode helper to AMDGPUInstInfo, which is used by both
hasVALU32BitEncoding and AMDGPUMCInstLower::lower
- report an error if a pseudo can't be lowered
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226188 91177308-0d34-0410-b5e6-96231b3b80d8
There are 3 changes:
- Convert 32-bit S_LSHL/LSHR/ASHR to their V_*REV variants for VI
- Lower RSQ_CLAMP for VI
- Don't generate MIN/MAX_LEGACY on VI
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223604 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix missing SALU format bits
- Remove unused isSALUInstr
- Add isVALU
- Switch isDS to use a bit like the others
- Move SIInstrInfo::is* functions to header
- Reorder so they are approximately sorted by type (SALU, VALU, memory)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223038 91177308-0d34-0410-b5e6-96231b3b80d8
This partially makes up for not having address spaces
used for alias analysis in some simple cases.
This is not yet enabled by default so shouldn't change anything yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222286 91177308-0d34-0410-b5e6-96231b3b80d8
The generic code trying to use findCommutedOpIndices won't
understand that it needs to swap the modifier operands also,
so it should fail if they are set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220064 91177308-0d34-0410-b5e6-96231b3b80d8
The base implementation of commuteInstruction is used
in some cases, but it turns out this has been broken for a
long time since modifiers were inserted between the real operands.
The base implementation of commuteInstruction also fails on immediates,
which also needs to be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218530 91177308-0d34-0410-b5e6-96231b3b80d8
VGPRs are spilled to LDS. This still needs more testing, but
we need to at least enable it at -O0, because the fast register
allocator spills all registers that are live at the end of blocks
and without this some future commits will break the
flat-address-space.ll test.
v2: Only calculate thread id once
v3: Move insertion of spill instructions to
SIRegisterInfo::eliminateFrameIndex()
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218348 91177308-0d34-0410-b5e6-96231b3b80d8
There are new register classes VCSrc_* which represent operands that
can take an SGPR, VGPR or inline constant. The VSrc_* class is now used
to represent operands that can take an SGPR, VGPR, or a 32-bit
immediate.
This allows us to have more accurate checks for legality of
immediates, since before we had no way to distinguish between operands
that supported any 32-bit immediate and operands which could only
support inline constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218334 91177308-0d34-0410-b5e6-96231b3b80d8
Only handles LDS atomics for now, and will be used
to replace atomics with no uses with the no return
versions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217378 91177308-0d34-0410-b5e6-96231b3b80d8
Ordinarily (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
is only done if the add has one use. If the resulting constant
add can be folded into an addressing mode, force this to happen
for the pointer operand.
This ends up happening a lot because of how LDS objects are allocated.
Since the globals are allocated next to each other, acessing the first
element of the second object is directly indexed by a shifted pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215739 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
This saves us from having to copy a 64-bit 0 value into VGPRs for
BUFFER_* instruction which only have a 12-bit immediate offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215399 91177308-0d34-0410-b5e6-96231b3b80d8
This currently has a noticable effect on the kernel argument loads.
LDS and global loads are more problematic, I think because of how copies
are currently inserted to ensure that the address is a VGPR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214942 91177308-0d34-0410-b5e6-96231b3b80d8
Abs/neg folding has moved out of foldOperands and into the instruction
selection phase using complex patterns. As a consequence of this
change, we now prefer to select the 64-bit encoding for most
instructions and the modifier operands have been dropped from
integer VOP3 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214467 91177308-0d34-0410-b5e6-96231b3b80d8
We were incorrectly assuming that all VOP2 instructions can read SGPRs
in Src0, but this is not true for instructions that read carry-in from
VCC.
The old logic has been replaced with new logic which checks the defined
register classes of the VOP2 instruction to determine whether or not to
legalize the operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214465 91177308-0d34-0410-b5e6-96231b3b80d8
We were commuting the instruction by still shrinking it using the
original opcode.
NOTE: This is a candidate for the 3.5 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214463 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow us to use a single MachineInstr to represent
instructions which behave the same but have different encodings
on some subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209028 91177308-0d34-0410-b5e6-96231b3b80d8
The register spiller assumes that only one new instruction is created
when spilling and restoring registers, so we need to emit pseudo
instructions for vector register spills and lower them after
register allocation.
v2:
- Fix calculation of lane index
- Extend VGPR liveness to end of program.
v3:
- Use SIMM16 field of S_NOP to specify multiple NOPs.
https://bugs.freedesktop.org/show_bug.cgi?id=75005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207843 91177308-0d34-0410-b5e6-96231b3b80d8