Instead of awkwardly encoding calling-convention information with ISD::CALL,
ISD::FORMAL_ARGUMENTS, ISD::RET, and ISD::ARG_FLAGS nodes, TargetLowering
provides three virtual functions for targets to override:
LowerFormalArguments, LowerCall, and LowerRet, which replace the custom
lowering done on the special nodes. They provide the same information, but
in a more immediately usable format.
This also reworks much of the target-independent tail call logic. The
decision of whether or not to perform a tail call is now cleanly split
between target-independent portions, and the target dependent portion
in IsEligibleForTailCallOptimization.
This also synchronizes all in-tree targets, to help enable future
refactoring and feature work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78142 91177308-0d34-0410-b5e6-96231b3b80d8
it is highly specific to the object file that will be generated in the end,
this introduces a new TargetLoweringObjectFile interface that is implemented
for each of ELF/MachO/COFF/Alpha/PIC16 and XCore.
Though still is still a brutal and ugly refactoring, this is a major step
towards goodness.
This patch also:
1. fixes a bunch of dangling pointer problems in the PIC16 backend.
2. disables the TargetLowering copy ctor which PIC16 was accidentally using.
3. gets us closer to xcore having its own crazy target section flags and
pic16 not having to shadow sections with its own objects.
4. fixes wierdness where ELF targets would set CStringSection but not
CStringSection_. Factor the code better.
5. fixes some bugs in string lowering on ELF targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77294 91177308-0d34-0410-b5e6-96231b3b80d8
be useful, and it's currently unused. (Some issues: it isn't actually
rich enough to capture the semantics on many architectures, and
semantics can vary depending on the type being shifted.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76633 91177308-0d34-0410-b5e6-96231b3b80d8
This stops gcc warning about possible uses of an uninitialized
value when compiling with assertions turned off.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74775 91177308-0d34-0410-b5e6-96231b3b80d8
With the SVR4 ABI on PowerPC, vector arguments for vararg calls are passed differently depending on whether they are a fixed or a variable argument. Variable vector arguments always go into memory, fixed vector arguments are put
into vector registers. If there are no free vector registers available, fixed vector arguments are put on the stack.
The NumFixedArgs attribute allows to decide for an argument in a vararg call whether it belongs to the fixed or variable portion of the parameter list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74764 91177308-0d34-0410-b5e6-96231b3b80d8
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74564 91177308-0d34-0410-b5e6-96231b3b80d8
The OpActions array had a limit of 32 value types, so change it to use
MVT::MAX_ALLOWED_VALUETYPE in its declaration and change the accesses to
this array to work with a VT.getSimpleVT() that is larger than 32.
Also, add a comment to the place where MVT::MAX_ALLOWED_VALUETYPE is
defined indicating that it must be a multiple of 32.
This is part of the work allow MVT::LAST_VALUETYPE be greater than 32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74130 91177308-0d34-0410-b5e6-96231b3b80d8
This change doubles the allowable value for MVT::LAST_VALUETYPE. It does
this by doing several things.
1. Introduces MVT::MAX_ALLOWED_LAST_VALUETYPE which in this change has a
value of 64. This value contains the current maximum for the
MVT::LAST_VALUETYPE.
2. Instead of checking "MVT::LAST_VALUETYPE <= 32", all of those uses
now become "MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_LAST_VALUETYPE"
3. Changes the dimension of the ValueTypeActions from 2 elements to four
elements and adds comments ahead of the declaration indicating the it is
"(MVT::MAX_ALLOWED_LAST_VALUETYPE/32) * 2". This at least lets us find
what is affected if and when MVT::MAX_ALLOWED_LAST_VALUETYPE gets
changed.
4. Adds initializers for the new elements of ValueTypeActions.
This does NOT add any types in MVT. That would be done separately.
This doubles the size of ValueTypeActions from 64 bits to 128 bits and
gives us the freedom to add more types for AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74110 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the IndexedModeAction representation to remove the
limitation on the number of value types in MVT. This limitation
prevents us from specifying AVX types.
Prior to this change IndexedModActions was represented as follows...
uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
the first dimension was used to represent loads, then stores. This
imposed a limitation of 32 on the number of value types that could be
handled with this method. The value type was used to shift the two bits
into and out of the approprate bits in the uint64_t.
With this change the array is now represented as ...
uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
Takes more space but removes the limitation on MVT::LAST_VALUETYPE. The
first dimension is now the value_type for the reference. The second
dimension is the load [0] vs. store[1]. The third dimension represents
the various modes for load store. Accesses are now direct, no shifting
or masking.
There are other limitations that need to be removed, so that
MVT::LAST_VALUETYPE can be greater than 32. This is merely the first
step towards that goal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73104 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the IndexedModeAction representation to remove the
limitation on the number of value types in MVT. This limitation
prevents us from specifying AVX types.
Prior to this change IndexedModActions was represented as follows...
uint64_t IndexedModeActions[2][ISD::LAST_INDEXED_MODE];
the first dimension was used to represent loads, then stores. This
imposed a limitation of 32 on the number of value types that could be
handled with this method. The value type was used to shift the two bits
into and out of the approprate bits in the uint64_t.
With this change the array is now represented as ...
uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
Takes more space but removes the limitation on MVT::LAST_VALUETYPE. The
first dimension is now the value_type for the reference. The second
dimension is the load [0] vs. store[1]. The third dimension represents
the various modes for load store. Accesses are now direct, no shifting
or masking.
There are other limitations that need to be removed, so that
MVT::LAST_VALUETYPE can be greater than 32. This is merely the first
step towards that goal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73102 91177308-0d34-0410-b5e6-96231b3b80d8
Update code generator to use this attribute and remove NoImplicitFloat target option.
Update llc to set this attribute when -no-implicit-float command line option is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72959 91177308-0d34-0410-b5e6-96231b3b80d8
build vectors with i64 elements will only appear on 32b x86 before legalize.
Since vector widening occurs during legalize, and produces i64 build_vector
elements, the dag combiner is never run on these before legalize splits them
into 32b elements.
Teach the build_vector dag combine in x86 back end to recognize consecutive
loads producing the low part of the vector.
Convert the two uses of TLI's consecutive load recognizer to pass LoadSDNodes
since that was required implicitly.
Add a testcase for the transform.
Old:
subl $28, %esp
movl 32(%esp), %eax
movl 4(%eax), %ecx
movl %ecx, 4(%esp)
movl (%eax), %eax
movl %eax, (%esp)
movaps (%esp), %xmm0
pmovzxwd %xmm0, %xmm0
movl 36(%esp), %eax
movaps %xmm0, (%eax)
addl $28, %esp
ret
New:
movl 4(%esp), %eax
pmovzxwd (%eax), %xmm0
movl 8(%esp), %eax
movaps %xmm0, (%eax)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72957 91177308-0d34-0410-b5e6-96231b3b80d8
e.g.
orl $65536, 8(%rax)
=>
orb $1, 10(%rax)
Since narrowing is not always a win, e.g. i32 -> i16 is a loss on x86, dag combiner consults with the target before performing the optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72507 91177308-0d34-0410-b5e6-96231b3b80d8
PR2957
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70225 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69952 91177308-0d34-0410-b5e6-96231b3b80d8
with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce
SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG
instructions), and teach the DAGCombiner to take advantage of this on
targets which support it. This eliminates many redundant
zero-extension operations on x86-64.
This adds a new TargetLowering hook, isZExtFree. It's similar to
isTruncateFree, except it only applies to actual definitions, and not
no-op truncates which may not zero the high bits.
Also, this adds a new optimization to SimplifyDemandedBits: transform
operations like x+y into (zext (add (trunc x), (trunc y))) on targets
where all the casts are no-ops. In contexts where the high part of the
add is explicitly masked off, this allows the mask operation to be
eliminated. Fix the DAGCombiner to avoid undoing these transformations
to eliminate casts on targets where the casts are no-ops.
Also, this adds a new two-address lowering heuristic. Since
two-address lowering runs before coalescing, it helps to be able to
look through copies when deciding whether commuting and/or
three-address conversion are profitable.
Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle
the case that a clobber range extended both before and beyond an
existing live range. In that case, multiple live ranges need to be
added. This was exposed by the new subreg coalescing code.
Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the
spiller behavior it was looking for no longer occurrs with the new
instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
x * 40
=>
shlq $3, %rdi
leaq (%rdi,%rdi,4), %rax
This has the added benefit of allowing more multiply to be folded into addressing mode. e.g.
a * 24 + b
=>
leaq (%rdi,%rdi,2), %rax
leaq (%rsi,%rax,8), %rax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67917 91177308-0d34-0410-b5e6-96231b3b80d8
dagcombines that help it match in several more cases. Add
several more cases to test/CodeGen/X86/bt.ll. This doesn't
yet include matching for BT with an immediate operand, it
just covers more register+register cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63266 91177308-0d34-0410-b5e6-96231b3b80d8
new isOperationLegalOrCustom, which does what isOperationLegal
previously did.
Update a bunch of callers to use isOperationLegalOrCustom
instead of isOperationLegal. In some case it wasn't obvious
which behavior is desired; when in doubt I changed then to
isOperationLegalOrCustom as that preserves their previous
behavior.
This is for the second half of PR3376.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63212 91177308-0d34-0410-b5e6-96231b3b80d8
own OpActionsCapacity magic number; it can just use ISD::BUILTIN_OP_END,
as long as it takes care to round up when needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61733 91177308-0d34-0410-b5e6-96231b3b80d8
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61542 91177308-0d34-0410-b5e6-96231b3b80d8