macro instruction (li) in the assembler.
We have identified three possible expansions depending on
the size of immediate operand:
1) for 0 ≤ j ≤ 65535.
li d,j =>
ori d,$zero,j
2) for −32768 ≤ j < 0.
li d,j =>
addiu d,$zero,j
3) for any other value of j that is representable as a 32-bit integer.
li d,j =>
lui d,hi16(j)
ori d,d,lo16(j)
All of the above have been implemented in ths patch.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165199 91177308-0d34-0410-b5e6-96231b3b80d8
.set option
The patch implements following options
at - lets the assembler use the $at register for macros,
but generates warnings if the source program uses $at
noat - let source programs use $at without issuingwarnings.
noreorder - prevents the assembler from reordering machine
language instructions.
nomacro - causes the assembler to print a warning whenever
an assembler operation generates more than one
machine language instruction.
macro - lets the assembler generate multiple machine instructions
from a single assembler instruction
reorder - lets the assembler reorder machine language
instructions to improve performance
The above variants are parsed and their boolean values set or unset.
The code to actually use them will come later.
Following options are not implemented yet:
nomips16
nomicromips
move
nomove
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165194 91177308-0d34-0410-b5e6-96231b3b80d8
in the Intel syntax.
The MC layer supports emitting in the Intel syntax, but this would require the
inline assembly MachineInstr to be lowered to an MCInst before emission. This
is potential future work, but for now emitting directly from the MachineInstr
suffices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165173 91177308-0d34-0410-b5e6-96231b3b80d8
for the number of bytes in a particular instruction
to using
const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
Desc.getSize()
This is necessary with the advent of 16 bit instructions with
mips16 and micromips. It is also puts Mips in compliance with
the other targets for getting instruction size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165171 91177308-0d34-0410-b5e6-96231b3b80d8
In order to avoid rev-lock with Clang when moving to the new API, also
preserve the current API temporarily and insert a shim to implement the
new API in terms of the old.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165165 91177308-0d34-0410-b5e6-96231b3b80d8
multiple stores with a single load. We create the wide loads and stores (and their chains)
before we remove the scalar loads and stores and fix the DAG chain. We attempted to merge
loads with a different chain. When that happened, the assumption that it is safe to RAUW
broke and a cycle was introduced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165148 91177308-0d34-0410-b5e6-96231b3b80d8
instruction (for Intel Atom) was not being done by Clang, because
the type context used by Clang is not the default context.
It fixes the problem by getting the global context types for each div/rem
instruction in order to compare them against the types in the BypassTypeMap.
Tests for this will be done as a separate patch to Clang.
Patch by Tyler Nowicki.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165126 91177308-0d34-0410-b5e6-96231b3b80d8
is not profitable in many cases because modern processors perform multiple stores
in parallel and merging stores prior to merging requires extra work. We handle two main cases:
1. Store of multiple consecutive constants:
q->a = 3;
q->4 = 5;
In this case we store a single legal wide integer.
2. Store of multiple consecutive loads:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
In this case we load/store either ilegal vector registers or legal wide integer registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165125 91177308-0d34-0410-b5e6-96231b3b80d8
Corrects a problem whereby MCSchedModel was not being set up when
the CPU type was auto-detected.
Patch by Andy Zhang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165122 91177308-0d34-0410-b5e6-96231b3b80d8
a memcpy to reflect that '0' has a different meaning when applied to
a load or store. Now we correctly use underaligned loads and stores for
the test case added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165101 91177308-0d34-0410-b5e6-96231b3b80d8
necessary during rewriting. As part of this, fix a real think-o here
where we might have left off an alignment specification when the address
is in fact underaligned. I haven't come up with any way to trigger this,
as there is always some other factor that reduces the alignment, but it
certainly might have been an observable bug in some way I can't think
of. This also slightly changes the strategy for placing explicit
alignments on loads and stores to only do so when the alignment does not
match that required by the ABI. This causes a few redundant alignments
to go away from test cases.
I've also added a couple of tests that really push on the alignment that
we end up with on loads and stores. More to come here as I try to fix an
underlying bug I have conjectured and produced test cases for, although
it's not clear if this bug is the one currently hitting dragonegg's
gcc47 bootstrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165100 91177308-0d34-0410-b5e6-96231b3b80d8
Enable the pass by default for targets that request it, and change the
-enable-early-ifcvt to the opposite -disable-early-ifcvt.
There are still some x86 regressions when enabling early if-conversion
because of the missing machine models. Disable the pass for x86 until
machine models are added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165075 91177308-0d34-0410-b5e6-96231b3b80d8
preserves the values of the relocated entries, unlikely remove_if. This
allows walking them and erasing them.
Also flesh out the predicate we are using for this to support the
various constraints actually imposed on a UnaryPredicate -- without this
we can't compose it with std::not1.
Thanks to Sean Silva for the review here and noticing the issue with
std::remove_if.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165073 91177308-0d34-0410-b5e6-96231b3b80d8
X86DAGToDAGISel::PreprocessISelDAG(), isel is moving load inside
callseq_start / callseq_end so it can be folded into a call. This can
create a cycle in the DAG when the call is glued to a copytoreg. We
have been lucky this hasn't caused too many issues because the pre-ra
scheduler has special handling of call sequences. However, it has
caused a crash in a specific tailcall case.
rdar://12393897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165072 91177308-0d34-0410-b5e6-96231b3b80d8
If the code is generated as assembler, this transformation does not occur assuming that it will occur later in the assembler.
This code was originally called from MipsAsmPrinter.cpp and we needed to check for OutStreamer.hasRawTextSupport(). This was not a good place for it and has been moved to MCTargetDesc/MipsMCCodeEmitter.cpp where both direct object and the assembler use it it automagically.
The test cases have been checked in for a number of weeks now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165067 91177308-0d34-0410-b5e6-96231b3b80d8
scheduled for processing on the worklist eventually gets deleted while
we are processing another alloca, fixing the original test case in
PR13990.
To facilitate this, add a remove_if helper to the SetVector abstraction.
It's not easy to use the standard abstractions for this because of the
specifics of SetVectors types and implementation.
Finally, a nice small test case is included. Thanks to Benjamin for the
fantastic reduced test case here! All I had to do was delete some empty
basic blocks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165065 91177308-0d34-0410-b5e6-96231b3b80d8
Reserved register live ranges look like a set of dead defs - any uses of
reserved registers are ignored.
Instead of skipping the updating of reserved register operands entirely,
just ignore the use operands and treat the def operands normally.
No test case, handleMove() is not commonly used yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165060 91177308-0d34-0410-b5e6-96231b3b80d8
of operand is specific to MS-style inline assembly and should not be generated
when parsing normal assembly.
The purpose of the wildcard operands are to allow the AsmParser to match
multiple instructions (i.e., MCInsts) to a given ms-style asm statement. For
the time being the matcher just returns the first match. This patch only
implements wildcard matches for memory operands. Support for register
wildcards will be added in the near future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165057 91177308-0d34-0410-b5e6-96231b3b80d8
JoinVals::pruneValues() calls LIS->pruneValue() to avoid conflicts when
overlapping two different values. This produces a set of live range end
points that are used to reconstruct the live range (with SSA update)
after joining the two registers.
When a value is pruned twice, the set of end points was insufficient:
v1 = DEF
v1 = REPLACE1
v1 = REPLACE2
KILL v1
The end point at KILL would only reconstruct the live range from
REPLACE2 to KILL, leaving the range REPLACE1-REPLACE2 dead.
Add REPLACE2 as an end point in this case so the full live range is
reconstructed.
This fixes PR13999.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165056 91177308-0d34-0410-b5e6-96231b3b80d8
We require that the indices into the use lists are stable in order to
build fast lookup tables to locate a particular partition use from an
operand of a PHI or select. This is (obviously in hind sight)
incompatible with erasing elements from the array. Really, we don't want
to erase anyways. It is expensive, and a rare operation. Instead, simply
weaken the contract of the PartitionUse structure to allow null Use
pointers to represent dead uses. Now we can clear out the pointer to
mark things as dead, and all it requires is adding some 'continue'
checks to the various loops.
I'm still reducing a test case for this, as the test case I have is
huge. I think this one I can get a nice test case for though, as it was
much more deterministic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165032 91177308-0d34-0410-b5e6-96231b3b80d8
This adds 'elf' as a recognized target triple environment value and overrides the default generated object format on Windows platforms if that value is present. This patch also enables MCJIT tests on Windows using the new environment value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165030 91177308-0d34-0410-b5e6-96231b3b80d8
being separate was that it can grow the use list. As a consequence, we
can't use the iterator-pair interface, we need an index based interface.
Expose such an interface from the AllocaPartitioning, and use it in the
speculator.
This should at least fix a use-after-free bug found by Duncan, and may
fix some of the other crashers.
I don't have a nice deterministic test case yet, but if I get a good
one, I'll add it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165027 91177308-0d34-0410-b5e6-96231b3b80d8
the add/sub case since in the case of multiplication you also have to check that
the operation in the larger type did not overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165017 91177308-0d34-0410-b5e6-96231b3b80d8
map constraints and MCInst operands to inline asm operands. This replaces the
getMCInstOperandNum() function.
The logic to determine the constraints are not in place, so we still default to
a register constraint (i.e., "r"). Also, we no longer build the MCInst but
rather return just the opcode to get the MCInstrDesc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164979 91177308-0d34-0410-b5e6-96231b3b80d8
The target backend can support data-in-code load commands even when
the assembler doesn't, or vice-versa. Allow targets to opt-in for
direct-to-object.
PR13973.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164974 91177308-0d34-0410-b5e6-96231b3b80d8
Reduces runtime of i386-large-relocations.s by 10x in Release builds, even more
in Debug+Asserts builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164945 91177308-0d34-0410-b5e6-96231b3b80d8
alignment requirements of the new alloca. As one consequence which was
reported as a bug by Duncan, we overaligned memcpy calls to ranges of
allocas after they were rewritten to types with lower alignment
requirements. Other consquences are possible, but I don't have any test
cases for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164937 91177308-0d34-0410-b5e6-96231b3b80d8
could probably be factored still further to hoist this logic into
a generic helper, but currently I don't have particularly clean ideas
about how to handle that.
This at least allows us to drop custom load rewriting from the
speculation logic, which in turn allows the existing load rewriting
logic to fire. In theory, this could enable vector promotion or other
tricks after speculation occurs, but I've not dug into such issues. This
is primarily just cleaning up the factoring of the code and the
resulting logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164933 91177308-0d34-0410-b5e6-96231b3b80d8
a pair of instructions, one for the used pointer and the second for the
user. This simplifies the representation and also makes it more dense.
This was noticed because of the miscompile in PR13926. In that case, we
were running up against a fundamental "bad idea" in the speculation of
PHI and select instructions: the speculation and rewriting are
interleaved, which requires phi speculation to also perform load
rewriting! This is bad, and causes us to miss opportunities to do (for
example) vector rewriting only exposed after PHI speculation, etc etc.
It also, in the old system, required us to insert *new* load uses into
the current partition's use list, which would then be ignored during
rewriting because we had already extracted an end iterator for the use
list. The appending behavior (and much of the other oddities) stem from
the strange de-duplication strategy in the PartitionUse builder.
Amusingly, all this went without notice for so long because it could
only be triggered by having *different* GEPs into the same partition of
the same alloca, where both different GEPs were operands of a single
PHI, and where the GEP which was not encountered first also had multiple
uses within that same PHI node... Hence the insane steps required to
reproduce.
So, step one in fixing this fundamental bad idea is to make the
PartitionUse actually contain a Use*, and to make the builder do proper
deduplication instead of funky de-duplication. This is enough to remove
the appending behavior, and fix the miscompile in PR13926, but there is
more work to be done here. Subsequent commits will lift the speculation
into its own visitor. It'll be a useful step toward potentially
extracting all of the speculation logic into a generic utility
transform.
The existing PHI test case for repeated operands has been made more
extreme to catch even these issues. This test case, run through the old
pass, will exactly reproduce the miscompile from PR13926. ;] We were so
close here!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164925 91177308-0d34-0410-b5e6-96231b3b80d8
source of false positives due to globals being declared in a header with some
kind of incomplete (small) type, but the actual definition being bigger.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164912 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164910 91177308-0d34-0410-b5e6-96231b3b80d8
alignment could lose it due to the alloca type moving down to a much
smaller alignment guarantee.
Now SROA will actively compute a proper alignment, factoring the target
data, any explicit alignment, and the offset within the struct. This
will in some cases lower the alignment requirements, but when we lower
them below those of the type, we drop the alignment entirely to give
freedom to the code generator to align it however is convenient.
Thanks to Duncan for the lovely test case that pinned this down. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164891 91177308-0d34-0410-b5e6-96231b3b80d8
buildbots. Original commit message:
A DAGCombine optimization for merging consecutive stores. This optimization is not profitable in many cases
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164890 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164885 91177308-0d34-0410-b5e6-96231b3b80d8
2. As part of this, added assembly format FEXT_RI16_SP_explicit_ins and
moved other lines for FEXT_RI16 formats to be in the right place in the code.
3. Added mayLoad and mayStore assignements for the load/store instructions added and for ones already there that did not have this assignment.
4. Another patch will deal with the problem of load/store byte/halfword to the stack. This is a particular Mips16 problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164811 91177308-0d34-0410-b5e6-96231b3b80d8
The new coalescer can turn a full virtual register definition into a
partial redef by merging another value into an unused vector lane.
Make sure to clear the <read-undef> flag on such defs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164807 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is obvious and the only test case I have is horrible, so I am
not including it. The problem shows up when self-hosting clang on i386
with -new-coalescer enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164793 91177308-0d34-0410-b5e6-96231b3b80d8
If the width is very large it gets truncated from uint64_t to uint32_t when
passed to TD->fitsInLegalInteger. The truncated value can fit in a register.
This manifested in massive memory usage or crashes (PR13946).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164784 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step towards ELF support; currently ARMFastISel hasn't
been used for ELF object files yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164759 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
If the offset is more than 24-bits, it won't fit in a scattered
relocation offset field, so we fall back to using a non-scattered
relocation.
rdar://12358909
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164724 91177308-0d34-0410-b5e6-96231b3b80d8
This opaque class will contain all of the attributes. All attribute queries will
go through this object. This object will also be uniqued in the LLVMContext.
Currently not used, so no implementation change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164722 91177308-0d34-0410-b5e6-96231b3b80d8
teach the callgraph logic to not create callgraph edges to intrinsics for invoke
instructions; it already skips this for call instructions. Fixes PR13903.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164707 91177308-0d34-0410-b5e6-96231b3b80d8
- Put statistics in alphabetical order
- Don't use getZextValue when building TableInt, just use APInts
- Introduce Create{Z,S}ExtOrTrunc in IRBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164696 91177308-0d34-0410-b5e6-96231b3b80d8
contrived for these yet, as I spotted them by inspection and the test
cases are a bit more tricky to phrase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164691 91177308-0d34-0410-b5e6-96231b3b80d8
alignment guarantees attached, re-compute the alignment so that we
consider offsets which impact alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164690 91177308-0d34-0410-b5e6-96231b3b80d8
rewriter in SROA to carry a proper alignment. This involves
interrogating various sources of alignment, etc. This is a more complete
and principled fix to PR13920 as well as related bugs pointed out by Eli
in review and by inspection in the area.
Also by inspection fix the integer and vector promotion paths to create
aligned loads and stores. I still need to work up test cases for
these... Sorry for the delay, they were found purely by inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164689 91177308-0d34-0410-b5e6-96231b3b80d8
tables in bitmaps when they fit in a target-legal register.
This saves some space, and it also allows for building tables that would
otherwise be deemed too sparse.
One interesting case that this hits is example 7 from
http://blog.regehr.org/archives/320. We currently generate good code
for this when lowering the switch to the selection DAG: we build a
bitmask to decide whether to jump to one block or the other. My patch
will result in the same bitmask, but it removes the need for the jump,
as the return value can just be retrieved from the mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164684 91177308-0d34-0410-b5e6-96231b3b80d8
For example, under a Linux chroot, /proc/ might not be mounted.
Therefor, we test if this file exist. If it is the case, use it (the current
behavior). Otherwise, we fall back to the detection used by *BSD.
The issue has been reported initially on the Debian bug tracker:
http://bugs.debian.org/674588
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164676 91177308-0d34-0410-b5e6-96231b3b80d8
This should really, really fix PR13916. For real this time. The
underlying bug is... a bit more subtle than I had imagined.
The setup is a code pattern that leads to an @llvm.memcpy call with two
equal pointers to an alloca in the source and dest. Now, not any pattern
will do. The alloca needs to be formed just so, and both pointers should
be wrapped in different bitcasts etc. When this precise pattern hits,
a funny sequence of events transpires. First, we correctly detect the
potential for overlap, and correctly optimize the memcpy. The first
time. However, we do simplify the set of users of the alloca, and that
causes us to run the alloca back through the SROA pass in case there are
knock-on simplifications. At this point, a curious thing has happened.
If we happen to have an i8 alloca, we have direct i8 pointer values. So
we don't bother creating a cast, we rewrite the arguments to the memcpy
to dircetly refer to the alloca.
Now, in an unrelated area of the pass, we have clever logic which
ensures that when visiting each User of a particular pointer derived
from an alloca, we only visit that User once, and directly inspect all
of its operands which refer to that particular pointer value. However,
the mechanism used to detect memcpy's with the potential to overlap
relied upon getting visited once per *Use*, not once per *User*. This is
always true *unless* the same exact value is both source and dest. It
turns out that almost nothing actually produces that pattern though.
We can hand craft test cases that more directly test this behavior of
course, and those are included. Also, note that there is a significant
missed optimization here -- we prove in many cases that there is
a non-volatile memcpy call with identical source and dest addresses. We
shouldn't prevent splitting the alloca in that case, and in fact we
should just remove such memcpy calls eagerly. I'll address that in
a subsequent commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164669 91177308-0d34-0410-b5e6-96231b3b80d8
scalar-to-vector conversion that we cannot handle. For instance, when an invalid
constraint is used in an inline asm statement.
<rdar://problem/12284092>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164662 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of embedding 'lock' into each mnemonic of atomic
instructions except 'xchg', we teach X86 assembly printer to output 'lock'
prefix similar to or consistent with code emitter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164659 91177308-0d34-0410-b5e6-96231b3b80d8
scalar-to-vector conversion that we cannot handle. For instance, when an invalid
constraint is used in an inline asm statement.
<rdar://problem/12284092>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164657 91177308-0d34-0410-b5e6-96231b3b80d8