Remove an assert that was expecting only the relevant 16bit portion for
the fixup being handled. Also kill some dead code in the T2 portion.
rdar://9653509
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140861 91177308-0d34-0410-b5e6-96231b3b80d8
Encode the immediate into its 8-bit form as part of isel rather than later,
which simplifies things for mapping the encoding bits, allows the removal
of the custom disassembler decoding hook, makes the operand printer trivial,
and prepares things more cleanly for handling these in the asm parser.
rdar://10211428
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140834 91177308-0d34-0410-b5e6-96231b3b80d8
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140696 91177308-0d34-0410-b5e6-96231b3b80d8
instructions are more aligned than the CPU requires, and adds some additional
directives, to follow in future patches. Patch by David Meyer!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139125 91177308-0d34-0410-b5e6-96231b3b80d8
- On COFF the .lcomm directive has an alignment argument.
- On ELF we fall back to .local + .comm
Based on a patch by NAKAMURA Takumi.
Fixes PR9337, PR9483 and PR10128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138976 91177308-0d34-0410-b5e6-96231b3b80d8
These fixups are handled poorly in general, and should have a single
contiguous range of bits per fixup type, but that's not how they're
currently organized, so for now in complex ones like for blx, we just tell the
emitter it's OK for the fixup to munge any bit it wants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137947 91177308-0d34-0410-b5e6-96231b3b80d8
Represent the operand value as it will be encoded in the instruction. This
allows removing the specialized encoder and decoder methods entirely. Add
an assembler match class while we're at it to lay groundwork for parsing the
thumb shift instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137879 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb one requires that many arithmetic instruction forms have an 'S'
suffix. For Thumb2, the whether the suffix is required or precluded depends
on whether the instruction is in an IT block. Use target parser predicates
to check for these sorts of context-sensitive constraints.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137746 91177308-0d34-0410-b5e6-96231b3b80d8
The immediate portion of the operand is just a boolean (the 'U' bit indicating
add vs. subtract). Treat it as such.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136969 91177308-0d34-0410-b5e6-96231b3b80d8
Memory operand parsing is a bit haphazzard at the moment, in no small part
due to the even more haphazzard representations of memory operands in the .td
files. Start cleaning that all up, at least a bit.
The addressing modes in the .td files will be being simplified to not be
so monolithic, especially with regards to immediate vs. register offsets
and post-indexed addressing. addrmode3 is on its way with this patch, for
example.
This patch is foundational to enable going back to smaller incremental patches
for the individual memory referencing instructions themselves. It does just
enough to get the basics in place and handle the "make check" regression tests
we already have.
Follow-up work will be fleshing out the details and adding more robust test
cases for the individual instructions, starting with ARM mode and moving from
there into Thumb and Thumb2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136845 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM*AsmPrinter.
GenLibDeps.pl fails to detect vtable references. As this is the only
referenced symbol from LLVM*Desc to LLVM*AsmPrinter on optimized
builds, the algorithm that creates the list of libraries to be linked
into tools doesn't know about the dependency and sometimes places the
libraries on the wrong order, yielding error messages like this:
../../lib/libLLVMARMDesc.a(ARMMCTargetDesc.cpp.o): In function
`llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo const&)':
ARMMCTargetDesc.cpp:(.text._ZN4llvm14ARMInstPrinterC1ERKNS_9MCAsmInfoE
[llvm::ARMInstPrinter::ARMInstPrinter(llvm::MCAsmInfo
const&)]+0x2a): undefined reference to `vtable for
llvm::ARMInstPrinter'
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136328 91177308-0d34-0410-b5e6-96231b3b80d8
This can happen in cases where TableGen generated asm matcher cannot check
whether a register operand is in the right register class. e.g. mem operands.
rdar://8204588
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136292 91177308-0d34-0410-b5e6-96231b3b80d8
Encode the width operand as it encodes in the instruction, which simplifies
the disassembler and the encoder, by using the imm1_32 operand def. Add a
diagnostic for the context-sensitive constraint that the width must be in
the range [1,32-lsb].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136264 91177308-0d34-0410-b5e6-96231b3b80d8
Start of cleaning this up a bit. First step is to remove the encoder hook by
storing the operand as the bits it'll actually encode to so it can just be
directly used. Map it to the assembly source values 8/16/24 when we print it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136152 91177308-0d34-0410-b5e6-96231b3b80d8