Method 'visitBUILD_VECTOR' in the DAGCombiner knows how to combine a
build_vector of a bunch of extract_vector_elt nodes and constant zero nodes
into a shuffle blend with a zero vector.
However, method 'visitBUILD_VECTOR' forgot that a floating point
build_vector may contain negative zero as well as positive zero.
Example:
define <2 x double> @example(<2 x double> %A) {
entry:
%0 = extractelement <2 x double> %A, i32 0
%1 = insertelement <2 x double> undef, double %0, i32 0
%2 = insertelement <2 x double> %1, double -0.0, i32 1
ret <2 x double> %2
}
Before this patch, llc (with -mattr=+sse4.1) wrongly generated
movq %xmm0, %xmm0 # xmm0 = xmm0[0],zero
So, the sign bit of the negative zero was effectively lost.
This patch fixes the problem by adding explicit checks for positive zero.
With this patch, llc produces the following code for the example above:
movhpd .LCPI0_0(%rip), %xmm0
where .LCPI0_0 referes to a 'double -0'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239070 91177308-0d34-0410-b5e6-96231b3b80d8
When checking (High - Low + 1).sle(BitWidth), BitWidth would be truncated
to the size of the left-hand side. In the case of this PR, the left-hand
side was i4, so BitWidth=64 got truncated to 0 and the assert failed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239048 91177308-0d34-0410-b5e6-96231b3b80d8
If the compare in a select pattern has another use then it can't be removed, so we'd just
be creating repeated code if we created a min/max node.
Spotted by Matt Arsenault!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239037 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LLVM's MI level notion of invariant_load is different from LLVM's IR
level notion of invariant_load with respect to dereferenceability. The
IR notion of invariant_load only guarantees that all *non-faulting*
invariant loads result in the same value. The MI notion of invariant
load guarantees that the load can be legally moved to any location
within its containing function. The MI notion of invariant_load is
stronger than the IR notion of invariant_load -- an MI invariant_load is
an IR invariant_load + a guarantee that the location being loaded from
is dereferenceable throughout the function's lifetime.
Reviewers: hfinkel, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238881 91177308-0d34-0410-b5e6-96231b3b80d8
This create a MCSymbolELF class and moves SymbolSize since only ELF
needs a size expression.
This reduces the size of MCSymbol from 56 to 48 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238801 91177308-0d34-0410-b5e6-96231b3b80d8
If a dead instruction we may not only have a last-use in the main live
range but also in a subregister range if subregisters are tracked. We
need to partially rebuild live ranges in both cases.
The testcase only broke when subregister liveness was enabled. I
commited it in the current form because there is currently no flag to
enable/disable subregister liveness.
This fixes PR23720.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238785 91177308-0d34-0410-b5e6-96231b3b80d8
This is important because of different addressing modes
depending on the address space for GPU targets.
This only adds the argument, and does not update
any of the uses to provide the correct address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238723 91177308-0d34-0410-b5e6-96231b3b80d8
around a value using its existing SDLoc.
Start using this in just one function to save omg lines of code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238638 91177308-0d34-0410-b5e6-96231b3b80d8
r238503 fixed the problem of too-small shift types by promoting them
during legalization, but the correct solution is to promote only the
operands that actually demand promotion.
This fixes a crash on an out-of-tree target caused by trying to
promote an operand that can't be promoted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238632 91177308-0d34-0410-b5e6-96231b3b80d8
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238602 91177308-0d34-0410-b5e6-96231b3b80d8
For some history here see the commit messages of r199797 and r169060.
The original intent was to fix cases like:
%EAX<def> = COPY %ECX<kill>, %RAX<imp-def>
%RCX<def> = COPY %RAX<kill>
where simply removing the copies would have RCX undefined as in terms of
machine operands only the ECX part of it is defined. The machine
verifier would complain about this so 169060 changed such COPY
instructions into KILL instructions so some super-register imp-defs
would be preserved. In r199797 it was finally decided to always do this
regardless of super-register defs.
But this is wrong, consider:
R1 = COPY R0
...
R0 = COPY R1
getting changed to:
R1 = KILL R0
...
R0 = KILL R1
It now looks like R0 dies at the first KILL and won't be alive until the
second KILL, while in reality R0 is alive and must not change in this
part of the program.
As this only happens after register allocation there is not much code
still performing liveness queries so the issue was not noticed. In fact
I didn't manage to create a testcase for this, without unrelated changes
I am working on at the moment.
The fix is simple: As of r223896 the MachineVerifier allows reads from
partially defined registers, so the whole transforming COPY->KILL thing
is not necessary anymore. This patch also changes a similar (but more
benign case as the def and src are the same register) case in the
VirtRegRewriter.
Differential Revision: http://reviews.llvm.org/D10117
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238588 91177308-0d34-0410-b5e6-96231b3b80d8
This commit translates the line and column numbers for LLVM IR
errors from the numbers in the YAML block scalar to the numbers
in the MIR file so that the MIRParser users can report LLVM IR
errors with the correct line and column numbers.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238576 91177308-0d34-0410-b5e6-96231b3b80d8
Small (really small!) C++ exception handling examples work on 32-bit x86
now.
This change disables the use of .seh_* directives in WinException when
CFI is not in use. It also uses absolute symbol references in the tables
instead of imagerel32 relocations.
Also fixes a cache invalidation bug in MMI personality classification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238575 91177308-0d34-0410-b5e6-96231b3b80d8
MIOperands/ConstMIOperands are classes iterating over the MachineOperand
of a MachineInstr, however MachineInstr::mop_iterator does the same
thing.
I assume these two iterators exist to have a uniform interface to
iterate over the operands of a machine instruction bundle and a single
machine instruction. However in practice I find it more confusing to have 2
different iterator classes, so this patch transforms (nearly all) the
code to use mop_iterators.
The only exception being MIOperands::anlayzePhysReg() and
MIOperands::analyzeVirtReg() still needing an equivalent, I leave that
as an exercise for the next patch.
Differential Revision: http://reviews.llvm.org/D9932
This version is slightly modified from the proposed revision in that it
introduces MachineInstr::getOperandNo to avoid the extra counting
variable in the few loops that previously used MIOperands::getOperandNo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238539 91177308-0d34-0410-b5e6-96231b3b80d8
About pristine regsiters:
Pristine registers "hold a value that is useless to the current
function, but that must be preserved - they are callee saved registers
that have not been saved." This concept saves compile time as it frees
the prologue/epilogue inserter from adding every such register to every
basic blocks live-in list.
However the current code in getPristineRegs is formulated in a
complicated way: Inside the function prologue and epilogue all callee
saves are considered pristine, while in the rest of the code only the
non-saved ones are considered pristine. This requires logic to
differentiate between prologue/epilogue and the rest and in the presence
of shrink-wrapping this even becomes complicated/expensive. It's also
unnecessary because the prologue epilogue inserters already mark
callee-save registers that are saved/restores properly in the respective
blocks in the prologue/epilogue (see updateLiveness() in
PrologueEpilogueInserter.cpp). So only declaring non-saved/restored
callee saved registers as pristine just works.
Differential Revision: http://reviews.llvm.org/D10101
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238524 91177308-0d34-0410-b5e6-96231b3b80d8
This is in preparation for reusing this for 32-bit x86 EH table
emission. Also updates the type name for consistency. NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238521 91177308-0d34-0410-b5e6-96231b3b80d8
This commit introduces a serializable structure called
'llvm::yaml::MachineFunction' that stores the machine
function's name. This structure will mirror the machine
function's state in the future.
This commit prints machine functions as YAML documents
containing a YAML mapping that stores the state of a machine
function. This commit also parses the YAML documents
that contain the machine functions.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D9841
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238519 91177308-0d34-0410-b5e6-96231b3b80d8
This moves all the state numbering code for C++ EH to WinEHPrepare so
that we can call it from the X86 state numbering IR pass that runs
before isel.
Now we just call the same state numbering machinery and insert a bunch
of stores. It also populates MachineModuleInfo with information about
the current function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238514 91177308-0d34-0410-b5e6-96231b3b80d8
The shift amount may be too small to cope with promoted left hand side,
make sure to promote it as well.
This fixes PR23664.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238503 91177308-0d34-0410-b5e6-96231b3b80d8
DIEAbbrev contains a SmallVector that can leak for overly large abbrevs. They
used to be owned by the DIE, but after the recent refactoring DWARFFile
allocates its own abbrevs.
Leak found by asan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238418 91177308-0d34-0410-b5e6-96231b3b80d8
Change `DIE::addChild()` to return a reference to the just-added node,
and update consumers to use it directly. An upcoming commit will
abstract away (and eventually change) the underlying storage of
`DIE::Children`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238372 91177308-0d34-0410-b5e6-96231b3b80d8
Stop storing a `DIEAbbrev` in `DIE`, since the data fits neatly inside
the `DIEValue` list. Besides being a cleaner data structure (avoiding
the parallel arrays), this gives us more freedom to rearrange the
`DIEValue` list.
This fixes the temporary memory regression from 845 MB up to 879 MB, and
drops it further to 829 MB for a net memory decrease of around 1.9%
(incremental decrease around 5.7%).
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238364 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r238350, effectively reapplying r238349 after fixing
(all?) the problems, all somehow related to how I was using
`AlignedArrayCharUnion<>` inside `DIEValue`:
- MSVC can only handle `sizeof()` on types, not values. Change the
assert.
- GCC doesn't know the `is_trivially_copyable` type trait. Instead of
asserting it, add destructors.
- Call placement new even when constructing POD (i.e., the pointers).
- Instead of copying the char buffer, copy the casted classes.
I've left in a couple of `static_assert`s that I think both MSVC and GCC
know how to handle. If the bots disagree with me, I'll remove them.
- Check that the constructed type is either standard layout or a
pointer. This protects against a programming error: we really want
the "small" `DIEValue`s to be small and simple, so don't
accidentally change them not to be.
- Similarly, check that the size of the buffer is no bigger than a
`uint64_t` or a pointer. (I thought checking against
`sizeof(uint64_t)` would be good enough, but Chandler suggested that
pointers might sometimes be bigger than that in the context of
sanitizers.)
I've also committed r238359 in the meantime, which introduces a
DIEValue.def to simplify dispatching between the various types (thanks
to a review comment by David Blaikie). Without that, this commit would
be almost unintelligible.
Here's the original commit message:
--
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
--
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238362 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r238349, since it caused some errors on bots:
- std::is_trivially_copyable isn't available until GCC 5.0.
- It was complaining about strict aliasing with my use of
ArrayCharUnion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238350 91177308-0d34-0410-b5e6-96231b3b80d8
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238349 91177308-0d34-0410-b5e6-96231b3b80d8
This commit a 3rd attempt at comitting the initial MIR serialization patch.
The first commit (r237708) was reverted in 237730. Then the second commit
(r237954) was reverted in r238007, as the MIR library under CodeGen caused
a circular dependency where the CodeGen library depended on MIR and MIR
library depended on CodeGen.
This commit has fixed the dependencies between CodeGen and MIR by
reorganizing the MIR serialization code - the code that prints out
MIR has been moved to CodeGen, and the MIR library has been renamed
to MIRParser. Now the CodeGen library doesn't depend on the
MIRParser library, thus the circular dependency no longer exists.
--Original Commit Message--
MIR Serialization: print and parse LLVM IR using MIR format.
This commit is the initial commit for the MIR serialization project.
It creates a new library under CodeGen called 'MIR'. This new
library adds a new machine function pass that prints out the LLVM IR
using the MIR format. This pass is then added as a last pass when a
'stop-after' option is used in llc. The new library adds the initial
functionality for parsing of MIR files as well. This commit also
extends the llc tool so that it can recognize and parse MIR input files.
Reviewers: Duncan P. N. Exon Smith, Matthias Braun, Philip Reames
Differential Revision: http://reviews.llvm.org/D9616
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238341 91177308-0d34-0410-b5e6-96231b3b80d8
the target can handle a given basic block as prologue
or epilogue.
Related to <rdar://problem/20821487>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238292 91177308-0d34-0410-b5e6-96231b3b80d8
- Clean documentation comment
- Change the API to accept an iterator so you can actually pass
MachineBasicBlock::end() now.
- Add more "const".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238288 91177308-0d34-0410-b5e6-96231b3b80d8
This was resulting in the addrspacecast being removed and incorrectly
replaced with a ptrtoint when sinking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238217 91177308-0d34-0410-b5e6-96231b3b80d8