Almost all immediates in PowerPC assembly (both 32-bit and 64-bit) are signed
numbers, and it is important that we print them as such. To make sure that
happens, we change PPCTargetLowering::LowerAsmOperandForConstraint so that it
does all intermediate checks on a signed-extended int64_t value, and then
creates the resulting target constant using MVT::i64. This will ensure that all
negative values are printed as negative values (mirroring what is done in other
backends to achieve the same sign-extension effect).
This came up in the context of inline assembly like this:
"add%I2 %0,%0,%2", ..., "Ir"(-1ll)
where we used to print:
addi 3,3,4294967295
and gcc would print:
addi 3,3,-1
and gas accepts both forms, but our builtin assembler (correctly) does not. Now
we print -1 like gcc does.
While here, I replaced a bunch of custom integer checks with isInt<16> and
friends from MathExtras.h.
Thanks to Paul Hargrove for the bug report.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223220 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM understands a -enable-sign-dependent-rounding-fp-math codegen option. When
the user has specified this option, the Tag_ABI_FP_rounding attribute should be
emitted with value 1. This option currently does not appear to disable
transformations and optimizations that assume default floating point rounding
behavior, AFAICT, but the intention should be recorded in the build attributes,
regardless of what the compiler actually does with the intention.
Change-Id: If838578df3dc652b6f2796b8d152545674bcb30e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223218 91177308-0d34-0410-b5e6-96231b3b80d8
When lazy reading a module, the types used in a function will not be visible to
a TypeFinder until the body is read.
This patch fixes that by asking the module for its identified struct types.
If a materializer is present, the module asks it. If not, it uses a TypeFinder.
This fixes pr21374.
I will be the first to say that this is ugly, but it was the best I could find.
Some of the options I looked at:
* Asking the LLVMContext. This could be made to work for gold, but not currently
for ld64. ld64 will load multiple modules into a single context before merging
them. This causes us to see types from future merges. Unfortunately,
MappedTypes is not just a cache when it comes to opaque types. Once the
mapping has been made, we have to remember it for as long as the key may
be used. This would mean moving MappedTypes to the Linker class and having
to drop the Linker::LinkModules static methods, which are visible from C.
* Adding an option to ignore function bodies in the TypeFinder. This would
fix the PR by picking the worst result. It would work, but unfortunately
we are currently quite dependent on the upfront type merging. I will
try to reduce our dependency, but it is not clear that we will be able
to get rid of it for now.
The only clean solution I could think of is making the Module own the types.
This would have other advantages, but it is a much bigger change. I will
propose it, but it is nice to have this fixed while that is discussed.
With the gold plugin, this patch takes the number of types in the LTO clang
binary from 52817 to 49669.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223215 91177308-0d34-0410-b5e6-96231b3b80d8
Remove an unnecessary `MDNode::replaceAllUsesWith()`. In the preceding
line, `TheLoop->setLoopID()` visits all backedges and sets the new loop
ID. This sufficiently updates the loop metadata.
Metadata RAUW is going away as part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223210 91177308-0d34-0410-b5e6-96231b3b80d8
Select i1 logical ops directly to 64-bit SALU instructions.
Vector i1 values are always really in SGPRs, with each
bit for each item in the wave. This saves about 4 instructions
when and/or/xoring any condition, and also helps write conditions
that need to be passed in vcc.
This should work correctly now that the SGPR live range
fixing pass works. More work is needed to eliminate the VReg_1
pseudo regclass and possibly the entire SILowerI1Copies pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223206 91177308-0d34-0410-b5e6-96231b3b80d8
The loop is over the operands of an instruction, and checks the
register with the sub reg index of the dest register. This probably
meant to be checking the sub reg index of the same operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223205 91177308-0d34-0410-b5e6-96231b3b80d8
m0 is treated as a virtual register class with a single register
rather than the physical register it really is. This was updating
the live range of the used virtual copy of m0 from the first ds_read
instruction, and leaving the unused copy unchanged. This resulted in a
"Live segment doesn't end at a valid instruction" verifier error because
the erased instructions. Update the live range of the second copy (which
should be dead).
No test since I'm not sure how to trigger this with SIFoldOperands
enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223203 91177308-0d34-0410-b5e6-96231b3b80d8
We were assuming that each back-edge in a region represented a unique
loop, which is not always the case. We need to use LoopInfo to
correctly determine which back-edges are loops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223199 91177308-0d34-0410-b5e6-96231b3b80d8
We just needed to remove the assertion in
AMDGPURegisterInfo::getFrameRegister(), which is called when
initializing the parser for inline assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223197 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223189 91177308-0d34-0410-b5e6-96231b3b80d8
The X86AsmParser intel handling was refactored in r216481, making it
try each different memory operand size to see which one matches.
Operand sizes larger than 80 ("[xyz]mmword ptr") were forgotten, which
led to an "invalid operand" error for code such as:
movdqa [rax], xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223187 91177308-0d34-0410-b5e6-96231b3b80d8
We need to use the custom expansion of readcyclecounter on all 32-bit targets
(even those with 64-bit registers). This should fix the ppc64 buildbot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223182 91177308-0d34-0410-b5e6-96231b3b80d8
A global variable without an explicit alignment specified should be assumed to
be ABI-aligned according to its type, like on other platforms. This allows us
to use better memory operations when accessing it.
rdar://18533701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223180 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it easier to debug Twine as the 'Kind' fields now show their enum values in lldb and not escaped characters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223178 91177308-0d34-0410-b5e6-96231b3b80d8
This frequently leads to cases like:
ldr xD, [xN, :lo12:var]
add xA, xN, :lo12:var
ldr xD, [xA, #8]
where the ADD would have been needed anyway, and the two distinct addressing
modes can prevent the formation of an ldp. Because of how we handle ADRP
(aggressively forming an ADRP/ADD pseudo-inst at ISel time), this pattern also
results in duplicated ADRP instructions (one on its own to cover the ldr, and
one combined with the add).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223172 91177308-0d34-0410-b5e6-96231b3b80d8
Such loops shouldn't be vectorized due to the loops form.
After applying loop-rotate (+simplifycfg) the tests again start to check
what they are intended to check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223170 91177308-0d34-0410-b5e6-96231b3b80d8
4i32 shuffles for single insertions into zero vectors lowers to X86vzmovl which was using (v)blendps - causing domain switch stalls. This patch fixes this by using (v)pblendw instead.
The updated tests on test/CodeGen/X86/sse41.ll still contain a domain stall due to the use of insertps - I'm looking at fixing this in a future patch.
Differential Revision: http://reviews.llvm.org/D6458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223165 91177308-0d34-0410-b5e6-96231b3b80d8
--xunit-xml-output saves test results to disk in JUnit's xml format. This will allow Jenkins to report the details of a lit run.
Based on a patch by David Chisnall.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223163 91177308-0d34-0410-b5e6-96231b3b80d8
We've long supported readcyclecounter on PPC64, but it is easier there (the
read of the 64-bit time-base register can be accomplished via a single
instruction). This now provides an implementation for PPC32 as well. On PPC32,
the time-base register is still 64 bits, but can only be read 32 bits at a time
via two separate SPRs. The ISA manual explains how to do this properly (it
involves re-reading the upper bits and looping if the counter has wrapped while
being read).
This requires PPC to implement a custom integer splitting legalization for the
READCYCLECOUNTER node, turning it into a target-specific SDAG node, which then
gets turned into a pseudo-instruction, which is then expanded to the necessary
sequence (which has three SPR reads, the comparison and the branch).
Thanks to Paul Hargrove for pointing out to me that this was still unimplemented.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223161 91177308-0d34-0410-b5e6-96231b3b80d8
Reduce the number of nops emitted for stackmap shadows on AArch64 by counting
non-stackmap instructions up to the next branch target towards the requested
shadow.
<rdar://problem/14959522>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223156 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Like N32/N64, they must be passed in the upper bits of the register.
The new code could be merged with the existing if-statements but I've
refrained from doing this since it will make porting the O32 implementation
to tablegen harder later.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6463
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223148 91177308-0d34-0410-b5e6-96231b3b80d8
Previously .cpu directive in ARM assembler didnt switch to the new CPU and
therefore acted as a nop. This implemented real action for .cpu and eg.
allows to assembler FreeBSD kernel with -integrated-as.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223147 91177308-0d34-0410-b5e6-96231b3b80d8
This is the fourth and final patch in the statepoint series. It contains the documentation for the statepoint intrinsics and their usage.
There's definitely still room to improve the documentation here, but I wanted to get this landed so it was available for others. There will likely be a series of small cleanup changes over the next few weeks as we work to clarify and revise the documentation. If you have comments or questions, please feel free to discuss them either in this commit thread, the original review thread, or on llvmdev. Comments are more than welcome.
Reviewed by: atrick, ributzka
Differential Revision: http://reviews.llvm.org/D5683
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223143 91177308-0d34-0410-b5e6-96231b3b80d8
Presumably it was added to the CMake system when MAXPATHLEN was still
used by code built for Windows. Currently only lib/Support/Path.inc uses
MAXPATHLEN, and it should be available on all Unices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223139 91177308-0d34-0410-b5e6-96231b3b80d8