indirect through a memory address is to load the memory address into
a register and then call indirect through the register.
This patch implements this improvement by modifying SelectionDAG to
force a function address which is a memory reference to be loaded
into a virtual register.
Patch by Sriram Murali.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178171 91177308-0d34-0410-b5e6-96231b3b80d8
All Intel CPUs since Yonah look a lot alike, at least at the granularity
of the scheduling models. We can add more accurate models for
processors that aren't Sandy Bridge if required. Haswell will probably
need its own.
The Atom processor and anything based on NetBurst is completely
different. So are the non-Intel chips.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178080 91177308-0d34-0410-b5e6-96231b3b80d8
Now all x86 instructions that have itinerary classes also have SchedRW
lists. This is required before the new scheduling models can be used.
There are still unannotated instructions remaining, but they don't have
itinerary classes either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178051 91177308-0d34-0410-b5e6-96231b3b80d8
- It's still considered aligned when the specified alignment is larger
than the natural alignment;
- The new alignment for the high 128-bit vector should be min(16,
alignment) as the pointer is advanced by 16, a power-of-2 offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177947 91177308-0d34-0410-b5e6-96231b3b80d8
All the instructions tagged with IIC_DEFAULT had nothing in common, and
we already have a NoItineraries class to represent untagged
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177937 91177308-0d34-0410-b5e6-96231b3b80d8
- After moving logic recognizing vector shift with scalar amount from
DAG combining into DAG lowering, we declare to customize all vector
shifts even vector shift on AVX is legal. As a result, the cost model
needs special tuning to identify these legal cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177586 91177308-0d34-0410-b5e6-96231b3b80d8
- Move SRA/SRL/SHL lowering support from DAG combination to DAG lowering
to support extended 256-bit integer in AVX but not AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177478 91177308-0d34-0410-b5e6-96231b3b80d8
Add a new WriteZero SchedWrite type for the common dependency-breaking
instructions that clear a register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177442 91177308-0d34-0410-b5e6-96231b3b80d8
an X86Operand, but also performs a Sema lookup and adds the sizing directive
when appropriate. Use this when parsing a bracketed statement. This is
necessary to get the instruction matching correct as well. Test case coming
on clang side.
rdar://13455408
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177439 91177308-0d34-0410-b5e6-96231b3b80d8
def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
(MOV64rm tglobaltlsaddr :$dst)>;
This pattern is invalid because the MOV64rm instruction expects a
source operand of type "i64mem", which is a subclass of X86MemOperand
and thus actually consists of five MI operands, but the Pat provides
only a single MI operand ("tglobaltlsaddr" matches an SDnode of
type ISD::TargetGlobalTLSAddress and provides a single output).
Thus, if the pattern were ever matched, subsequent uses of the MOV64rm
instruction pattern would access uninitialized memory. In addition,
with the TableGen patch I'm about to check in, this would actually be
reported as a build-time error.
Fortunately, the pattern does in fact never match, for at least two
independent reasons.
First, the code generator actually never generates a pattern of the
form (load (X86Wrapper (tglobaltlsaddr))). For most combinations of
TLS and code models, (tglobaltlsaddr) represents just an offset that
needs to be added to some base register, so it is never directly
dereferenced. The only exception is the initial-exec model, where
(tglobaltlsaddr) refers to the (pc-relative) address of a GOT slot,
which *is* in fact directly dereferenced: but in that case, the
X86WrapperRIP node is used, not X86Wrapper, so the Pat doesn't match.
Second, even if some patterns along those lines *were* ever generated,
we should not need an extra Pat pattern to match it. Instead, the
original MOV64rm instruction pattern ought to match directly, since
it uses an "addr" operand, which is implemented via the SelectAddr
C++ routine; this routine is supposed to accept the full range of
input DAGs that may be implemented by a single mov instruction,
including those cases involving ISD::TargetGlobalTLSAddress (and
actually does so e.g. in the initial-exec case as above).
To avoid build breaks (due to the above-mentioned error) after the
TableGen patch is checked in, I'm removing this Pat here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177426 91177308-0d34-0410-b5e6-96231b3b80d8
We hitch a ride with the existing OpndItins class that was used to add
instruction itinerary classes in the many multiclasses in this file.
Use the link provided by the X86FoldableSchedWrite.Folded to find the
right SchedWrite for folded loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177326 91177308-0d34-0410-b5e6-96231b3b80d8
This new-style scheduling information is going to replace the
instruction iteneraries.
This also serves as a test case for Andy's fix in r177317.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177323 91177308-0d34-0410-b5e6-96231b3b80d8
MinGW is almost completely compatible to MSVC, with the exception of the _tls_array global not being available.
Patch by David Nadlinger!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177257 91177308-0d34-0410-b5e6-96231b3b80d8
Since almost all X86 instructions can fold loads, use a multiclass to
define register/memory pairs of SchedWrites.
An X86FoldableSchedWrite represents the register version of an
instruction. It holds a reference to the SchedWrite to use when the
instruction folds a load.
This will be used inside multiclasses that define rr and rm instruction
versions together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177210 91177308-0d34-0410-b5e6-96231b3b80d8