field represents ELF section header sh_info field and does not have any
sense for regular sections. Its interpretation depends on section type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209801 91177308-0d34-0410-b5e6-96231b3b80d8
During loop-unroll, loop exits from the current loop may end up in in different
outer loop. This requires to re-form LCSSA recursively for one level down from
the outer most loop where loop exits are landed during unroll. This fixes PR18861.
Differential Revision: http://reviews.llvm.org/D2976
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209796 91177308-0d34-0410-b5e6-96231b3b80d8
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209788 91177308-0d34-0410-b5e6-96231b3b80d8
Don't assume that dynamically initialized globals are all initialized from
_GLOBAL__<module_name>I_ function. Instead, scan the llvm.global_ctors and
insert poison/unpoison calls to each function there.
Patch by Nico Weber!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209780 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209762, bringing back r209746. It was not responsible for the libc++ build failure
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209776 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209746.
It looks it is causing a crash while building libcxx. I am trying to get a
reduced testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209762 91177308-0d34-0410-b5e6-96231b3b80d8
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209759 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209755 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209747 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209746 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r209638 because it broke self-hosting on ppc64/Linux. (the
Clang-compiled TableGen would segfault because it jumped to an invalid address
from within _ZNK4llvm17ManagedStaticBase21RegisterManagedStaticEPFPvvEPFvS1_E
(which is within the command-line parameter registration process)).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209745 91177308-0d34-0410-b5e6-96231b3b80d8
Add regression tests for the following transformation:
str X, [x20]
...
add x20, x20, #32
->
str X, [x20], #32
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209715 91177308-0d34-0410-b5e6-96231b3b80d8
Add regression tests for the following transformation:
ldr X, [x20]
...
add x20, x20, #32
->
ldr X, [x20], #32
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209711 91177308-0d34-0410-b5e6-96231b3b80d8
The delinearization is needed only to remove the non linearity induced by
expressions involving multiplications of parameters and induction variables.
There is no problem in dealing with constant times parameters, or constant times
an induction variable.
For this reason, the current patch discards all constant terms and multipliers
before running the delinearization algorithm on the terms. The only thing
remaining in the term expressions are parameters and multiply expressions of
parameters: these simplified term expressions are passed to the array shape
recognizer that will not recognize constant dimensions anymore: these will be
recognized as different strides in parametric subscripts.
The only important special case of a constant dimension is the size of elements.
Instead of relying on the delinearization to infer the size of an element,
compute the element size from the base address type. This is a much more precise
way of computing the element size than before, as we would have mixed together
the size of an element with the strides of the innermost dimension.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209691 91177308-0d34-0410-b5e6-96231b3b80d8
%higher and %highest can have non-zero values only for offsets greater
than 2GB, which is highly unlikely, if not impossible when compiling a
single function. This makes long branch for MIPS64 3 instructions smaller.
Differential Revision: http://llvm-reviews.chandlerc.com/D3281.diff
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209678 91177308-0d34-0410-b5e6-96231b3b80d8
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209677 91177308-0d34-0410-b5e6-96231b3b80d8
A further step to correctly emitting concrete out of line definitions
preceeding inlined instances of the same program.
To do this, emission of subprograms must be delayed until required since
we don't know which (abstract only (if there's no out of line
definition), concrete only (if there are no inlined instances), or both)
DIEs are required at the start of the module.
To reduce the test churn in the following commit that actually fixes the
bug, this commit introduces the lazy DIE construction and cleans up test
cases that are impacted by the changes in the resulting DIE ordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209675 91177308-0d34-0410-b5e6-96231b3b80d8
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209674 91177308-0d34-0410-b5e6-96231b3b80d8
This is an enhancement to SeparateConstOffsetFromGEP. With this patch, we can
extract a constant offset from "s/zext and/or/xor A, B".
Added a new test @ext_or to verify this enhancement.
Refactoring the code, I also extracted some common logic to function
Distributable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209670 91177308-0d34-0410-b5e6-96231b3b80d8
This old test didn't have the argument numbering that's now squirelled
away in the high bits of the line number in the DW_TAG_arg_variable
metadata.
Add the numbering and update the test to ensure arguments are in-order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209669 91177308-0d34-0410-b5e6-96231b3b80d8
Detected by Daniel Jasper, Ilia Filippov, and Andrea Di Biagio
Fixed the argument order to select (the mask semantics to blendv* are the
inverse of select) and fixed the tests
Added parenthesis to the assert condition
Ran clang-format
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209667 91177308-0d34-0410-b5e6-96231b3b80d8
In PPCISelLowering.cpp: PPCTargetLowering::LowerBUILD_VECTOR(), there
is an optimization for certain patterns to generate one or two vector
splats followed by a vector add or subtract. This operation is
represented by a VADD_SPLAT in the selection DAG. Prior to this
patch, it was possible for the VADD_SPLAT to be assigned the wrong
data type, causing incorrect code generation. This patch corrects the
problem.
Specifically, the code previously assigned the value type of the
BUILD_VECTOR node to the newly generated VADD_SPLAT node. This is
correct much of the time, but not always. The problem is that the
call to isConstantSplat() may return a SplatBitSize that is not the
same as the number of bits in the original element vector type. The
correct type to assign is a vector type with the same element bit size
as SplatBitSize.
The included test case shows an example of this, where the
BUILD_VECTOR node has a type of v16i8. The vector to be built is {0,
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16}. isConstantSplat
detects that we can generate a splat of 16 for type v8i16, which is
the type we must assign to the VADD_SPLAT node. If we do not, we
generate a vspltisb of 8 and a vaddubm, which generates the incorrect
result {16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16}. The correct code generation is a vspltish of 8 and a vadduhm.
This patch also corrected code generation for
CodeGen/PowerPC/2008-07-10-SplatMiscompile.ll, which had been marked
as an XFAIL, so we can remove the XFAIL from the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209662 91177308-0d34-0410-b5e6-96231b3b80d8
Cortex-M4 only has single-precision floating point support, so any LLVM
"double" type will have been split into 2 i32s by now. Fortunately, the
consecutive-register framework turns out to be precisely what's needed to
reconstruct the double and follow AAPCS-VFP correctly!
rdar://problem/17012966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209650 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Implemented an InstCombine transformation that takes a blendv* intrinsic
call and translates it into an IR select, if the mask is constant.
This will eventually get lowered into blends with immediates if possible,
or pblendvb (with an option to further optimize if we can transform the
pblendvb into a blend+immediate instruction, depending on the selector).
It will also enable optimizations by the IR passes, which give up on
sight of the intrinsic.
Both the transformation and the lowering of its result to asm got shiny
new tests.
The transformation is a bit convoluted because of blendvp[sd]'s
definition:
Its mask is a floating point value! This forces us to convert it and get
the highest bit. I suppose this happened because the mask has type
__m128 in Intel's intrinsic and v4sf (for blendps) in gcc's builtin.
I will send an email to llvm-dev to discuss if we want to change this or
not.
Reviewers: grosbach, delena, nadav
Differential Revision: http://reviews.llvm.org/D3859
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209643 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is debatable. There are two possible approaches, neither
of which is really satisfactory:
1. Use "@foo(i1 zeroext)" to mean an extension to 32-bits on Darwin,
and 8 bits otherwise.
2. Redefine "@foo(i1)" to mean that the i1 is extended by the caller
to 8 bits. This goes against the spirit of "zeroext" I think, but
it's a bit of a vague construct anyway (by definition you're going
to extend to the amount required by the ABI, that's why it's the
ABI!).
This implements option 2. The DAG machinery really isn't setup for the
first (there's a fairly strong assumption that "zeroext" goes to at
least the smallest register size), and even if it was the resulting
DAG looks like it would be inferior in many cases.
Theoretically we could add AssertZext nodes in the consumers of
ABI-passed values too now, but this actually seems to make the code
worse in practice by making truncation proceed in two steps. The code
produced is equally valid if we continue to assume only the low bit is
defined.
Should fix PR19850
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209637 91177308-0d34-0410-b5e6-96231b3b80d8
We can eliminate the custom C++ code in favour of some TableGen to
check the same things. Functionality should be identical, except for a
buffer overrun that was present in the C++ code and meant webkit
failed if any small argument needed to be passed on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209636 91177308-0d34-0410-b5e6-96231b3b80d8
We have a couple of regression tests for load/store pairing, but (to my knowledge) there are no regression tests for the load/store + add/sub folding.
As a first step towards increased test coverage of this area, this commit adds a test for one instance of a load + add to pre-indexed load transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209618 91177308-0d34-0410-b5e6-96231b3b80d8
This was previously regressed/broken by r192749 (reverted due to this
issue in r192938) and I was about to break it again by accident with
some more invasive changes that deal with the subprogram lists. So to
avoid that and further issues - here's a test.
It's a pretty basic test - in both r192749 and my impending case, this
test would crash, but checking the basics (that we put a subprogram in
just one of the two CUs) seems like a good start.
We still get this wrong in weird ways if the linkonce-odr function
happens to not be identical in the metadata (because it's defined in two
different files (hence the # line directives in this test), etc) even
though it meets the language requirements (identical token stream) for
such a thing. That results in two subprogram DIEs, but only one of them
gets the parameter and high/low pc information, etc. We probably need to
use the DIRef infrastructure to deduplicate functions as we do types to
address this issue - or perhaps teach the BC linker to remove the
duplicate entries in subprogram lists?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209614 91177308-0d34-0410-b5e6-96231b3b80d8
Seems my previous fix was insufficient - we were still not adding the
inlined function to the abstract scope list. Which meant it wasn't
flagged as inline, didn't have nested lexical scopes in the abstract
definition, and didn't have abstract variables - so the inlined variable
didn't reference an abstract variable, instead being described
completely inline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209602 91177308-0d34-0410-b5e6-96231b3b80d8
We still do temporary files in many cases, just updating this particular
one because I was debugging it and made this change while doing so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209601 91177308-0d34-0410-b5e6-96231b3b80d8
Currently we look at the Aliasee to decide what type of export
directive to use. It seems better to use the type of the alias
directly. This is similar to how we handle the alias having the
same address but other attributes (linkage, visibility) from the
aliasee.
With this patch it is now possible to do things like
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc"
@foo = global [6 x i8] c"\B8*\00\00\00\C3", section ".text", align 16
@f = dllexport alias i32 (), [6 x i8]* @foo
!llvm.module.flags = !{!0}
!0 = metadata !{i32 6, metadata !"Linker Options", metadata !1}
!1 = metadata !{metadata !2, metadata !3}
!2 = metadata !{metadata !"/DEFAULTLIB:libcmt.lib"}
!3 = metadata !{metadata !"/DEFAULTLIB:oldnames.lib"}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209600 91177308-0d34-0410-b5e6-96231b3b80d8
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209580 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
After the load/store refactoring, we were sometimes trying to feed a
GPR64 into a 32-bit register offset operand. This failed in
copyPhysReg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209566 91177308-0d34-0410-b5e6-96231b3b80d8
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209554 91177308-0d34-0410-b5e6-96231b3b80d8
It's an unnecessary detail for this test and just gets in the way when
making unrelated changes to the output in this test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209553 91177308-0d34-0410-b5e6-96231b3b80d8
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209547 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r209358: PR19799: Indvars miscompile due to an
incorrect max backedge taken count from SCEV.
That fix was incomplete as pointed out by Arnold and Michael Z. The
code was also too confusing. It needed a careful rewrite with more
unit tests. This version will also happen to optimize more cases.
<rdar://17005101> PR19799: Indvars miscompile...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209545 91177308-0d34-0410-b5e6-96231b3b80d8
This matches both what we do for the non-thread case and what gcc does.
With this patch clang would match gcc's behaviour in
static __thread int a = 42;
extern __thread int b __attribute__((alias("a")));
int *f(void) { return &a; }
int *g(void) { return &b; }
if not for pr19843. Manually writing the IL does produce the same access modes.
It is also a step in the direction of fixing pr19844.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209543 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed a TODO in r207783.
Add the extracted constant offset using GEP instead of ugly
ptrtoint+add+inttoptr. Using GEP simplifies future optimizations and makes IR
easier to understand.
Updated all affected tests, and added a new test in split-gep.ll to cover a
corner case where emitting uglygep is necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209537 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add a second fixup table to MipsAsmBackend::getFixupKindInfo() to correctly
position llvm-mc's fixup placeholders for big-endian.
See PR19836 for full details of the issue. To summarize, the fixup placeholders
do not account for endianness properly and the implementations of
getFixupKindInfo() for each target are measuring MCFixupKindInfo.TargetOffset
from different ends of the instruction encoding to compensate.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209514 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209512 91177308-0d34-0410-b5e6-96231b3b80d8
Some bit-set fields used in ELF file headers in fact contain two parts.
The first one is a regular bit-field. The second one is an enumeraion.
For example ELF header `e_flags` for MIPS target might contain the
following values:
Bit-set values:
EF_MIPS_NOREORDER = 0x00000001
EF_MIPS_PIC = 0x00000002
EF_MIPS_CPIC = 0x00000004
EF_MIPS_ABI2 = 0x00000020
Enumeration:
EF_MIPS_ARCH_32 = 0x50000000
EF_MIPS_ARCH_64 = 0x60000000
EF_MIPS_ARCH_32R2 = 0x70000000
EF_MIPS_ARCH_64R2 = 0x80000000
For printing bit-sets we use the `yaml::IO::bitSetCase()`. It does not
support bit-set/enumeration combinations and prints too many flags from
an enumeration part. This patch fixes this problem. New method
`yaml::IO::maskedBitSetCase()` handle "enumeration" part of bitset
defined by provided mask.
Patch reviewed by Nick Kledzik and Sean Silva.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209504 91177308-0d34-0410-b5e6-96231b3b80d8
Rafael correctly pointed out that the restriction is unnecessary. Although the
tests are intended to ensure that we dont abort due to an assertion, running the
tests in all modes is better since it also ensures that we dont crash without
assertions. Always run these tests to ensure that we can handle invalid input
correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209496 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution::isKnownPredicate() can wrongly reduce a comparison
when both the LHS and RHS are SCEVAddRecExprs. This checks that both
LHS and RHS are guarded in the case when both are SCEVAddRecExprs.
The test case is against indvars because I could not find a way to
directly test SCEV.
Patch by Sanjay Patel!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209487 91177308-0d34-0410-b5e6-96231b3b80d8
This allows existing DAG combines to work on them, and then
we can re-match to BFE if necessary during instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209462 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the x86 backend how to efficiently lower ISD::BITCAST dag
nodes from MVT::f64 to MVT::v4i16 (and vice versa), and from MVT::f64 to
MVT::v8i8 (and vice versa).
This patch extends the logic from revision 208107 to also handle MVT::v4i16
and MVT::v8i8. Also, this patch correctly propagates Undef values when
performing the widening of a vector (example: when widening from v2i32 to
v4i32, the upper 64bits of the resulting vector are 'undef').
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209451 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds two new diagnostics: -pass-remarks-missed and
-pass-remarks-analysis. They take the same values as -pass-remarks but
are intended to be triggered in different contexts.
-pass-remarks-missed is used by LLVMContext::emitOptimizationRemarkMissed,
which passes call when they tried to apply a transformation but
couldn't.
-pass-remarks-analysis is used by LLVMContext::emitOptimizationRemarkAnalysis,
which passes call when they want to inform the user about analysis
results.
The patch also:
1- Adds support in the inliner for the two new remarks and a
test case.
2- Moves emitOptimizationRemark* functions to the llvm namespace.
3- Adds an LLVMContext argument instead of making them member functions
of LLVMContext.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3682
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209442 91177308-0d34-0410-b5e6-96231b3b80d8
This changes ARM64 to use separate operands for each component of an
address, and look for separate '[', '$Rn, ..., ']' tokens when
parsing.
This allows us to do away with quite a bit of special C++ code to
handle monolithic "addressing modes" in the MC components. The more
incremental matching of the assembler operands also allows for better
diagnostics when LLVM is presented with invalid input.
Most of the complexity here is with the register-offset instructions,
which were extremely dodgy beforehand: even when the instruction used
wM, LLVM's model had xM as an operand. We papered over this
discrepancy before, but that approach doesn't work now so I split them
into separate X and W variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209425 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
* Split into two functions, one to test each struct.
* R0 and R2 must be defined by an lw with a %got reference to the correct
symbol.
* Test for $4 (first argument) where appropriate instead of accepting any
register.
* Test that the two lbu's are correctly combined into $4
Depends on D3844
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3845
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209424 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
lwl and lwr are not available in MIPS32r6/MIPS64r6. The purpose of the test
is to check that the '$1' expands to '0($x)' rather than to test something related
to the lwl or lwr instructions so we can simply switch to lw.
Depends on D3842
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3844
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209423 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch is necessary so that they do not fail on MIPS32r6/MIPS64r6 when
-integrated-as is enabled by default and we correctly detect the host CPU.
No functional change since these tests are testing the behaviour of the
constraint used for the third operand rather than the mnemonic.
Depends on D3842
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3843
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209421 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These emit the 'unknown instruction' instead of the correct error
because they have not been implemented in LLVM for any MIPS ISA.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3841
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209418 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This required me to implement the disassembler for MIPS64r6 since the encodings
are ambiguous with other instructions. This in turn revealed a few
assembly/disassembly bugs which I have fixed.
* da[ht]i only take two operands according to the spec, not three.
* DecodeBranchTarget2[16] correctly handles wider immediates than simm16
* Also made non-functional change to DecodeBranchTarget and
DecodeBranchTargetMM to keep implementation style consistent between
them.
* Difficult encodings are handled by a custom decode method on the most
general encoding in the group. This method will convert the MCInst to a
different opcode if necessary.
DecodeBranchTarget is not currently the inverse of getBranchTargetOpValue
so disassembling some branch instructions emit incorrect output. This seems
to affect branches with delay slots on all MIPS ISA's. I've left this bug
for now and temporarily removed the check for the immediate on
bc[12]eqz/bc[12]nez in the MIPS32r6/MIPS64r6 tests.
jialc and jic crash the disassembler for some reason. I've left these
instructions commented out for the moment.
Depends on D3760
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3761
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209415 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic permits the emission of platform specific undefined sequences.
ARM has reserved the 0xde opcode which takes a single integer parameter (ignored
by the CPU). This permits the operating system to implement custom behaviour on
this trap. The llvm.arm.undefined intrinsic is meant to provide a means for
generating the target specific behaviour from the frontend. This is
particularly useful for Windows on ARM which has made use of a series of these
special opcodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209390 91177308-0d34-0410-b5e6-96231b3b80d8
Now that clang can be used as an assembler via the IAS, invalid assembler inputs
would cause the assertions to trigger. Although we cannot recover from the
errors here, nor provide caret diagnostics, attempt to handle them slightly more
gracefully by reporting a fatal error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209387 91177308-0d34-0410-b5e6-96231b3b80d8
This has to do with the trip count computation for loops with multiple
exits, which is quite subtle. Most passes just ask for a single trip
count number, so we must be conservative assuming any exit could be
taken. Normally, we rely on the "exact" trip count, which was
correctly given as "unknown". However, SCEV also gives a "max"
back-edge taken count. The loops max BE taken count is conservatively
a maximum over the max of each exit's non-exiting iterations
count. Note that some exit tests can be skipped so the max loop
back-edge taken count can actually exceed the max non-exiting
iterations for some exits. However, when we know the loop *latch*
cannot be skipped, we can directly use its max taken count
disregarding other exits. I previously took the minimum here without
checking whether the other exit could be skipped. The correct, and
simpler thing to do here is just to directly use the loop latch's max
non-exiting iterations as the loops max back-edge count.
In the problematic test case, the first loop exit had a max of zero
non-exiting iterations, but could be skipped. The loop latch was known
not to be skipped but had max of one non-exiting iteration. We
incorrectly claimed the loop back-edge could be taken zero times, when
it is actually taken one time.
Fixes Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count.
Loop %for.body.i: max backedge-taken count is 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209358 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209338 91177308-0d34-0410-b5e6-96231b3b80d8
This corrects the emission of IMAGE_REL_ARM_MOV32T relocations. Previously, we
were avoiding the high portion of the relocation too early. If there was a
section-relative relocation with an offset greater than 16-bits (65535), you
would end up truncating the high order bits of the offset. Allow the current
relocation representation to flow through out the MC layer to the object writer.
Use the new ability to restrict recorded relocations to avoid emitting the
relocation into the final object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209337 91177308-0d34-0410-b5e6-96231b3b80d8
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209335 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::VSELECT mask uses 1 to identify the first argument and 0 to identify the
second argument.
On the other hand, BLENDI uses 0 to identify the first argument and 1 to
identify the second argument.
Fix the generation of the blend mask to account for this difference.
The bug did not show up with r209043, because we were not checking for the
actual arguments of the blend instruction!
This commit also fixes the test cases.
Note: The same mask works for the BLENDr variant because the arguments are
swapped during instruction selection (see the BLENDXXrr patterns).
<rdar://problem/16975435>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209324 91177308-0d34-0410-b5e6-96231b3b80d8
Permit active macro expansions when terminating the assembler if there were
errors during the expansion. This would only trigger on invalid input when
built with assertions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209309 91177308-0d34-0410-b5e6-96231b3b80d8
The .drectve section should be marked as IMAGE_SCN_LNK_REMOVE. This matches what
the MSVC toolchain does and accurately reflects that this section should not be
emitted into the final binary. This section is merely information for the
linker, comprising of additional linker directives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209273 91177308-0d34-0410-b5e6-96231b3b80d8
Although the previous code would construct a bundle and add the correct elements
to it, it would not finalise the bundle. This resulted in the InternalRead
markers not being added to the MachineOperands nor, more importantly, the
externally visible defs to the bundle itself. So, although the bundle was not
exposing the def, the generated code would be correct because there was no
optimisations being performed. When optimisations were enabled, the post
register allocator would kick in, and the hazard recognizer would reorder
operations around the load which would define the value being operated upon.
Rather than manually constructing the bundle, simply construct and finalise the
bundle via the finaliseBundle call after both MIs have been emitted. This
improves the code generation with optimisations where IMAGE_REL_ARM_MOV32T
relocations are emitted.
The changes to the other tests are the result of the bundle generation
preventing the scheduler from hoisting the moves across the loads. The net
effect of the generated code is equivalent, but, is much more identical to what
is actually being lowered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209267 91177308-0d34-0410-b5e6-96231b3b80d8
for undefined symbols, so it matches what COFFObjectFile::getSymbolAddress
does. This allows llvm-nm to print spaces instead of 0’s for the value
of undefined symbols in Mach-O files.
To make this change other uses of MachOObjectFile::getSymbolAddress
are updated to handle when the Value is returned as UnknownAddressOrSize.
Which is needed to keep two of the ExecutionEngine tests working for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209253 91177308-0d34-0410-b5e6-96231b3b80d8
Povray and dealII currently assert with "Overran sorted position" in
AssignTopologicalOrder. The problem is that performPostLD1Combine can
introduce cycles.
Consider:
(insert_vector_elt (INSERT_SUBREG undef,
(load (add %vreg0, Constant<8>), undef), <= A
TargetConstant<2>),
(load %vreg0, undef), <= B
Constant<1>)
This is turned into a LD1LANEpost node. However the address in A is not a
valid user of the post-incremented address of B in LD1LANEpost.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209242 91177308-0d34-0410-b5e6-96231b3b80d8
make the functions to set them non-static.
Move and rename the llvm specific backend options to avoid conflicting
with the clang option.
Paired with a backend commit to update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209238 91177308-0d34-0410-b5e6-96231b3b80d8
for undefined symbols. Allowing llvm-nm to print spaces instead of 0’s for
the value of undefined symbols in Mach-O files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209235 91177308-0d34-0410-b5e6-96231b3b80d8
This commit introduces a canonical representation for the formulae.
Basically, as soon as a formula has more that one base register, the scaled
register field is used for one of them. The register put into the scaled
register is preferably a loop variant.
The commit refactors how the formulae are built in order to produce such
representation.
This yields a more accurate, but still perfectible, cost model.
<rdar://problem/16731508>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209230 91177308-0d34-0410-b5e6-96231b3b80d8
In refactoring DwarfUnit::isUnsignedDIType I restricted it to only work
on values with signedness (unsigned or signed), asserting on anything
else (which did uncover some bugs). But it turns out that we do need to
emit constants of signless data, such as pointer constants - only null
pointer constants are known to need this so far, but it's conceivable
that there might be non-null pointer constants at some point (hardcoded
address offsets for device drivers?).
This patch just uses 'unsigned' for signless data such as pointer
constants. Arguably we could use signless representations
(DW_FORM_dataN) instead, allowing a trinary result from isUnsignedDIType
(signed, unsigned, signless), but this seems reasonable for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209223 91177308-0d34-0410-b5e6-96231b3b80d8
The SplitIndexingFromLoad changes exposed a latent isel bug in the PowerPC64
backend. We matched an immediate offset with STWX8 even though it only
supports register offset.
The culprit is the complex-pattern predicate, SelectAddrIdx, which decides
that if the offset is not ISD::Constant it must be a register.
Many thanks to Bill Schmidt for testing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209219 91177308-0d34-0410-b5e6-96231b3b80d8
After discussion with Zoran, we have decided to temporarily revert this commit.
It's causing some difficult to resolve conflicts and we are under time pressure
to deliver an initial MIPS64r6 compiler.
We will re-apply an equivalent patch once the time pressure has passed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209211 91177308-0d34-0410-b5e6-96231b3b80d8
When multiple aliases overlap, the correct string to print can often be
determined purely by considering the InstAlias declarations in some particular
order. This allows the user to specify that order manually when desired,
without resorting to hacking around with the default lexicographical order on
Record instantiation, which is error-prone and ugly.
I was also mistaken about "add w2, w3, w4" being the same as "add w2, w3, w4,
uxtw". That's only true if Rn is the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209199 91177308-0d34-0410-b5e6-96231b3b80d8
This workaround (presumably for ancient GDB) doesn't appear to be
required (GDB 7.5 seems to tolerate function definition DIEs in
namespace scope just fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209189 91177308-0d34-0410-b5e6-96231b3b80d8
Since we visit the whole list of subprograms for each CU at module
start, this is clearly true - don't test for the case, just assert it.
A few old test cases seemed to have incomplete subprogram lists, but any
attempt to reproduce them shows full subprogram lists that even include
entities that have been completely inlined and the out of line
definition removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209178 91177308-0d34-0410-b5e6-96231b3b80d8
When I refactored this in r208636 I accidentally caused this to be added
multiple times to each abstract subprogram (not accounting for the
deduplicating effect of the InlinedSubprogramDIEs set).
This got better in r208798 when the abstract definitions got the
attribute added to them at construction time, but still had the
redundant copies introduced in r208636.
This commit removes those excess DW_AT_inlines and relies solely on the
insertion in r208798.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209166 91177308-0d34-0410-b5e6-96231b3b80d8
The check in DwarfDebug::constructScopeDIE was meant to consider inlined
subroutines as any non-top-level scope that was a subprogram. Instead of
checking "not top level scope" it was checking if the /subprogram's/
scope was non-top-level.
Fix this and beef up a test case to demonstrate some of the missing
inlined_subroutines are no longer missing.
In the course of fixing this I also found that r208748 (with this fix)
found one /extra/ inlined_subroutine in concrete_out_of_line.ll due to
two inlined_subroutines having the same inlinedAt location. The previous
implementation was collapsing these into a single inlined subroutine.
I'm not sure what the original code was that created this .ll file so
I'm not sure if this actually happens in practice today. Since we
deliberately include column information to disambiguate two calls on the
same line, that may've addressed this bug in the frontend, but it's good
to know that workaround isn't necessary for this particular case
anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209165 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the X86 backend doesn't support types larger than i128 very well. For
example an i192 multiply will assert in codegen when the 2nd argument is a constant and the constant got hoisted.
This fix changes the cost model to never hoist constants for types larger than
i128. Once the codegen issues have been resolved, the cost model can be updated
to allow also larger types.
This is related to <rdar://problem/16954938>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209162 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions TZCNT (requires BMI1) and LZCNT (requires LZCNT), always
provide the operand size as output if the input operand is zero.
We can take advantage of this knowledge during instruction selection
stage in order to simplify a few corner case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209159 91177308-0d34-0410-b5e6-96231b3b80d8
so that llvm-size will total up all the sections in the Berkeley format. This
allows for rough categorizations for Mach-O sections. And allows the total of
llvm-size’s Berkeley and System V formats to be the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209158 91177308-0d34-0410-b5e6-96231b3b80d8