There are patterns to handle immediates when they fit in the immediate field.
e.g. %sub = add i32 %x, -123
=> sub r0, r0, #123
Add patterns to catch immediates that do not fit but should be materialized
with a single movw instruction rather than movw + movt pair.
e.g. %sub = add i32 %x, -65535
=> movw r1, #65535
sub r0, r0, r1
rdar://11726136
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159057 91177308-0d34-0410-b5e6-96231b3b80d8
Minor drive by fix to cleanup latency computation. Calling
getOperandLatency with a deliberately incorrect operand index does not
give you the latency you want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158959 91177308-0d34-0410-b5e6-96231b3b80d8
boolean flag to an enum: { Fast, Standard, Strict } (default = Standard).
This option controls the creation by optimizations of fused FP ops that store
intermediate results in higher precision than IEEE allows (E.g. FMAs). The
behavior of this option is intended to match the behaviour specified by a
soon-to-be-introduced frontend flag: '-ffuse-fp-ops'.
Fast mode - allows formation of fused FP ops whenever they're profitable.
Standard mode - allow fusion only for 'blessed' FP ops. At present the only
blessed op is the fmuladd intrinsic. In the future more blessed ops may be
added.
Strict mode - allow fusion only if/when it can be proven that the excess
precision won't effect the result.
Note: This option only controls formation of fused ops by the optimizers. Fused
operations that are explicitly requested (e.g. FMA via the llvm.fma.* intrinsic)
will always be honored, regardless of the value of this option.
Internally TargetOptions::AllowExcessFPPrecision has been replaced by
TargetOptions::AllowFPOpFusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158956 91177308-0d34-0410-b5e6-96231b3b80d8
_umodsi3 libcalls if they have the same arguments. This optimization
was apparently broken if one of the node was replaced in place.
rdar://11714607
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158900 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158757 91177308-0d34-0410-b5e6-96231b3b80d8
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits. The 8 bit case doesn't
need to be handled, as the 8 bit constants are encoded directly, thereby
not needing a separate load instruction to form the constant into a register.
<rdar://problem/11481151>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158659 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize abs(x-y)
FROM
sub, movs, rsbmi
TO
subs, rsbmi
For abs, we will use cmp instead of movs. This is necessary because we already
have an existing peephole pass which optimizes away cmp following sub.
rdar: 11633193
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158551 91177308-0d34-0410-b5e6-96231b3b80d8
For store->load dependencies that may alias, we should always use
TrueMemOrderLatency, which may eventually become a subtarget hook. In
effect, we should guarantee at least TrueMemOrderLatency on at least
one DAG path from a store to a may-alias load.
This should fix the standard mode as well as -enable-aa-sched-mi".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158380 91177308-0d34-0410-b5e6-96231b3b80d8
We turned off the CMN instruction because it had semantics which we weren't
getting correct. If we are comparing with an immediate, then it's okay to use
the CMN instruction.
<rdar://problem/7569620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158302 91177308-0d34-0410-b5e6-96231b3b80d8
The fast register allocator is not supposed to work in the optimizing
pipeline. It doesn't make sense to compute live intervals, run full copy
coalescing, and then run RAFast.
Fast register allocation in the optimizing pipeline is better done by
RABasic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158242 91177308-0d34-0410-b5e6-96231b3b80d8
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits.
<rdar://problem/11481151>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157966 91177308-0d34-0410-b5e6-96231b3b80d8
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157062 91177308-0d34-0410-b5e6-96231b3b80d8
It is now possible to coalesce weird skewed sub-register copies by
picking a super-register class larger than both original registers. The
included test case produces code like this:
vld2.32 {d16, d17, d18, d19}, [r0]!
vst2.32 {d18, d19, d20, d21}, [r0]
We still perform interference checking as if it were a normal full copy
join, so this is still quite conservative. In particular, the f1 and f2
functions in the included test case still have remaining copies because
of false interference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156878 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156599 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156550 91177308-0d34-0410-b5e6-96231b3b80d8
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155824 91177308-0d34-0410-b5e6-96231b3b80d8
On some cores it's a bad idea for performance to mix VFP and NEON instructions
and since these patterns are NEON anyway, the NEON load should be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155630 91177308-0d34-0410-b5e6-96231b3b80d8