will conflict with another live range. The place which creates this scenerio is
the code in X86 that lowers a select instruction by splitting the MBBs. This
eliminates the need to check from the bottom up in an MBB for live pregs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106066 91177308-0d34-0410-b5e6-96231b3b80d8
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105998 91177308-0d34-0410-b5e6-96231b3b80d8
symbols as declarations in the X86 backend. This would manifest
on darwin x86-32 as errors like this with -fvisibility=hidden:
symbol '__ZNSbIcED1Ev' can not be undefined in a subtraction expression
This fixes PR7353.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105954 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105749 91177308-0d34-0410-b5e6-96231b3b80d8
there could be multiple subexpressions within a single expansion which
require insert point adjustment. This fixes PR7306.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105510 91177308-0d34-0410-b5e6-96231b3b80d8
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105453 91177308-0d34-0410-b5e6-96231b3b80d8
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105387 91177308-0d34-0410-b5e6-96231b3b80d8
that are too large. This causes the freebsd bootloader to be too
large apparently.
It's unclear if this should be an -Os or -Oz thing. Thoughts welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105228 91177308-0d34-0410-b5e6-96231b3b80d8
optimization level.
This only really affects llc for now because both the llvm-gcc and clang front
ends override the default register allocator. I intend to remove that code later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104904 91177308-0d34-0410-b5e6-96231b3b80d8
Mon Ping provided; unfortunately bugpoint failed to
reduce it, but I think it's important to have a test for
this in the suite. 8023512.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104624 91177308-0d34-0410-b5e6-96231b3b80d8
pass after isel instead of being interlaced with it, we can
trust that all the code for a function has been isel'd before
it is run.
The practical impact of this is that we can scan for machine
instr phis instead of doing a fuzzy match on the LLVM BB for
phi nodes. Doing the fuzzy match required knowing when isel
would produce an fp reg stack phi which was gross. It was
also wrong in cases where select got lowered to a branch
tree because cmovs aren't available (PR6828).
Just do the scan on machine phis which is simpler, faster
and more correct. This fixes PR6828.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104333 91177308-0d34-0410-b5e6-96231b3b80d8
operand on the left, the interesting operand is on the right. This
fixes a bug where LSR was failing to recognize ICmpZero uses,
which led it to be unable to reverse the induction variable in the
attached testcase.
Delete test/CodeGen/X86/stack-color-with-reg-2.ll, because its test
is extremely fragile and hard to meaningfully update.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104262 91177308-0d34-0410-b5e6-96231b3b80d8
<1xi64> -> i64 to work in MMX registers on hosts where -no-sse
is the default (not mine). The right thing is
to accept this and make i64->f64 conversions go through memory,
but I don't have time right now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103914 91177308-0d34-0410-b5e6-96231b3b80d8
(This worked as of about 6 months ago and I didn't track down
exactly what broke it; I think this fix is appropriate.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103911 91177308-0d34-0410-b5e6-96231b3b80d8
Sorry for the big change. The path leading up to this patch had some TableGen
changes that I didn't want to commit before I knew they were useful. They
weren't, and this version does not need them.
The fast register allocator now does no liveness calculations. Instead it relies
on kill flags provided by isel. (Currently those kill flags are also ignored due
to isel bugs). The allocation algorithm is supposed to work with any subset of
valid kill flags. More kill flags simply means fewer spills inserted.
Registers are allocated from a working set that contains no aliases. That means
most allocations can be done directly without expensive alias checks. When the
working set runs out of registers we do the full alias check to find new free
registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103488 91177308-0d34-0410-b5e6-96231b3b80d8
LSRUse's Regs set after all pruning is done, rather than trying
to do it on the fly, which can produce an incomplete result.
This fixes a case where heuristic pruning was stripping all
formulae from a use, which led the solver to enter an infinite
loop.
Also, add a few asserts to diagnose this kind of situation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103328 91177308-0d34-0410-b5e6-96231b3b80d8
getConstantFP to accept the two supported long double
target types. This was not the original intent, but
there are other places that assume this works and it's
easy enough to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103299 91177308-0d34-0410-b5e6-96231b3b80d8
Users can write broken code that emits the same label twice with asm renaming,
detect this and emit a fatal backend error instead of aborting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103140 91177308-0d34-0410-b5e6-96231b3b80d8
beneficial cases. See the changes in test/CodeGen/X86/tail-opts.ll and
test/CodeGen/ARM/ifcvt2.ll for details.
The fix is to change HashEndOfMBB to hash at most one instruction,
instead of trying to apply heuristics about when it will be profitable to
consider more than one instruction. The regular tail-merging heuristics
are already prepared to handle the same cases, and they're more precise.
Also, make test/CodeGen/ARM/ifcvt5.ll and
test/CodeGen/Thumb2/thumb2-branch.ll slightly more complex so that they
continue to test what they're intended to test.
And, this eliminates the problem in
test/CodeGen/Thumb2/2009-10-15-ITBlockBranch.ll, the testcase from
PR5204. Update it accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102907 91177308-0d34-0410-b5e6-96231b3b80d8
indexes could be of a different value type. Or not even using the same SDNode
for the constant (weird, I know). Compare the actual values instead of the
pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102791 91177308-0d34-0410-b5e6-96231b3b80d8
call that might throw. The landing pad assumes that all registers are in stack
slots.
We used to spill those dirty CSRs after the call, and the stack slots would be
wrong when arriving at the landing pad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102770 91177308-0d34-0410-b5e6-96231b3b80d8
of different register classes. e.g.
%reg1048:3<def> = EXTRACT_SUBREG %RAX<kill>, 3
Where %reg1048 is a GR32 register. This is not impossible to handle, but it is
pretty hard and very rare.
This should unbreak the dragonegg builder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102672 91177308-0d34-0410-b5e6-96231b3b80d8
alignment of globals to the preferred alignment, but only when
there is no section specified on the global (by far the common
case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102515 91177308-0d34-0410-b5e6-96231b3b80d8
otherwise labels get incorrectly merged. We handled this by emitting a
".byte 0", but this isn't correct on thumb/arm targets where the text segment
needs to be a multiple of 2/4 bytes. Handle this by emitting a noop. This
is more gross than it should be because arm/ppc are not fully mc'ized yet.
This fixes rdar://7908505
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102400 91177308-0d34-0410-b5e6-96231b3b80d8
doesn't dominate the header is needed, don't check whether the increment
expression has computable loop evolution. While the operands of an
addrec are required to be loop-invariant, they're not required to
dominate any part of the loop. This fixes PR6914.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102389 91177308-0d34-0410-b5e6-96231b3b80d8
alignment of globals with a specified alignment, we fix
common variables to obey their alignment. Add a comment
explaining why this behavior is important.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102365 91177308-0d34-0410-b5e6-96231b3b80d8
alignment to match what's used in clang and GCC for __alignof, rather
than trying to guess what Legalize is going to be doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102206 91177308-0d34-0410-b5e6-96231b3b80d8
misses an opportunity to fold add operands, but folds them
after LSR has separated them out. This fixes rdar://7886751.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102157 91177308-0d34-0410-b5e6-96231b3b80d8
optimization for non-leaf functions. This will be hooked up to gcc's
-momit-leaf-frame-pointer option. rdar://7886181
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101984 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't occur much at all, it only seems to formed in the case
when the trunc optimization kicks in due to phase ordering. In that
case it is saves a few bytes on x86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101350 91177308-0d34-0410-b5e6-96231b3b80d8
a load/or/and/store sequence into a narrower store when it is
safe. Daniel tells me that clang will start producing this sort
of thing with bitfields, and this does trigger a few dozen times
on 176.gcc produced by llvm-gcc even now.
This compiles code like CodeGen/X86/2009-05-28-DAGCombineCrash.ll
into:
movl %eax, 36(%rdi)
instead of:
movl $4294967295, %eax ## imm = 0xFFFFFFFF
andq 32(%rdi), %rax
shlq $32, %rcx
addq %rax, %rcx
movq %rcx, 32(%rdi)
and each of the testcases into a single store. Each of them used
to compile into craziness like this:
_test4:
movl $65535, %eax ## imm = 0xFFFF
andl (%rdi), %eax
shll $16, %esi
addl %eax, %esi
movl %esi, (%rdi)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101343 91177308-0d34-0410-b5e6-96231b3b80d8
If we have this situation:
jCC L1
jmp L2
L1:
...
L2:
...
We can get a small performance boost by emitting this instead:
jnCC L2
L1:
...
L2:
...
This testcase shows an example of this:
float func(float x, float y) {
double product = (double)x * y;
if (product == 0.0)
return product;
return product - 1.0;
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101075 91177308-0d34-0410-b5e6-96231b3b80d8
explicitly split into stride-and-offset pairs. Also, add the
ability to track multiple post-increment loops on the same expression.
This refines the concept of "normalizing" SCEV expressions used for
to post-increment uses, and introduces a dedicated utility routine for
normalizing and denormalizing expressions.
This fixes the expansion of expressions which are post-increment users
of more than one loop at a time. More broadly, this takes LSR another
step closer to being able to reason about more than one loop at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100699 91177308-0d34-0410-b5e6-96231b3b80d8
in particular, they end up aligning strings at 16-byte boundaries, and
there's no way for GlobalOpt to check OptForSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100172 91177308-0d34-0410-b5e6-96231b3b80d8
- Do not try to infer GV alignment unless its type is sized. It's not possible to infer alignment if it has opaque type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100118 91177308-0d34-0410-b5e6-96231b3b80d8
1. Makes it possible to lower with floating point loads and stores.
2. Avoid unaligned loads / stores unless it's fast.
3. Fix some memcpy lowering logic bug related to when to optimize a
load from constant string into a constant.
4. Adjust x86 memcpy lowering threshold to make it more sane.
5. Fix x86 target hook so it uses vector and floating point memory
ops more effectively.
rdar://7774704
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100090 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrite the pmulld patterns, and make sure that they fold in loads of
arguments into the instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99910 91177308-0d34-0410-b5e6-96231b3b80d8
transforming it into (add (i32 GPR), 4). This allows us to write type
generic multi patterns and have tblgen automatically drop the bitconvert
in the case when the types align. This allows us to fold an extra load
in the changed testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99756 91177308-0d34-0410-b5e6-96231b3b80d8
happening.
Enhance scheduling to set the DEAD flag on implicit defs
more aggressively. Before, we'd set an implicit def operand
to dead if it were present in the SDNode corresponding to
the machineinstr but had no use. Now we do it in this case
AND if the implicit def does not exist in the SDNode at all.
This exposes a couple of problems: one is the FIXME, which
causes a live intervals crash on CodeGen/X86/sibcall.ll.
The second is that it makes machinecse and licm more
aggressive (which is a good thing) but also exposes a case
where licm hoists a set0 and then it doesn't get resunk.
Talking to codegen folks about both these issues, but I need
this patch in in the meantime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99485 91177308-0d34-0410-b5e6-96231b3b80d8