llvm-6502/lib/CodeGen
Sergey Dmitrouk 6eb9a62fe0 [DebugInfo] Debug locations for constant SD nodes
Several updates for [DebugInfo] Add debug locations to constant SD nodes (r235989).
Includes:

 *  re-enabling the change (disabled recently);
 *  missing change for FP constants;
 *  resetting debug location of constant node if it's used more than at one place
    to prevent emission of wrong locations in case of coalesced constants;
 *  a couple of additional tests.

Now all look ups in CSEMap are wrapped by additional method.

Comment in D9084 suggests that debug locations aren't useful for "target constants",
so there might be one more change related to this API (namely, dropping debug
locations for getTarget*Constant methods).

Differential Revision: http://reviews.llvm.org/D9604

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237237 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-13 08:58:03 +00:00
..
AsmPrinter [WinEH] Update exception numbering to give handlers their own base state. 2015-05-11 19:41:19 +00:00
SelectionDAG [DebugInfo] Debug locations for constant SD nodes 2015-05-13 08:58:03 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h Test commit: fix typo in comment. 2015-04-22 17:42:37 +00:00
AllocationOrder.cpp
AllocationOrder.h
Analysis.cpp CodeGen: move over-zealous assert into actual if statement. 2015-05-06 20:07:38 +00:00
AntiDepBreaker.h
AtomicExpandPass.cpp
BasicTargetTransformInfo.cpp
BranchFolding.cpp Don't rewrite jumps to empty BBs to landing pads. 2015-04-30 18:58:23 +00:00
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp
CMakeLists.txt [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
CodeGen.cpp [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
CodeGenPrepare.cpp Convert PHI getIncomingValue() to foreach over incoming_values(). NFC. 2015-05-12 20:05:31 +00:00
CriticalAntiDepBreaker.cpp
CriticalAntiDepBreaker.h Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
DeadMachineInstructionElim.cpp
DFAPacketizer.cpp
DwarfEHPrepare.cpp
EarlyIfConversion.cpp Add range iterators for post order and inverse post order. Use them 2015-04-15 17:41:42 +00:00
EdgeBundles.cpp
ErlangGC.cpp
ExecutionDepsFix.cpp
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp Make the message associated with a fatal error slightly more helpful 2015-04-26 22:00:34 +00:00
GCMetadataPrinter.cpp
GCRootLowering.cpp Teach gcroot how to handle dynamically realigned frames 2015-04-02 05:00:40 +00:00
GCStrategy.cpp
GlobalMerge.cpp [opaque pointer type] Pass GlobalAlias the actual pointer type rather than decomposing it into pointee type + address space 2015-04-29 21:22:39 +00:00
IfConversion.cpp Handle dead defs in the if converter. 2015-05-06 22:51:04 +00:00
InlineSpiller.cpp IR: Give 'DI' prefix to debug info metadata 2015-04-29 16:38:44 +00:00
InterferenceCache.cpp
InterferenceCache.h
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp
LexicalScopes.cpp IR: Give 'DI' prefix to debug info metadata 2015-04-29 16:38:44 +00:00
LiveDebugVariables.cpp IR: Give 'DI' prefix to debug info metadata 2015-04-29 16:38:44 +00:00
LiveDebugVariables.h IR: Give 'DI' prefix to debug info metadata 2015-04-29 16:38:44 +00:00
LiveInterval.cpp Oops, didn't mean to commit my debug fprintfs 2015-04-08 02:10:01 +00:00
LiveIntervalAnalysis.cpp
LiveIntervalUnion.cpp
LivePhysRegs.cpp Handle dead defs in the if converter. 2015-05-06 22:51:04 +00:00
LiveRangeCalc.cpp LiveRangeCalc: Improve error messages on malformed IR 2015-05-11 18:47:47 +00:00
LiveRangeCalc.h
LiveRangeEdit.cpp
LiveRegMatrix.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LLVMBuild.txt
LLVMTargetMachine.cpp MC: Skip names of temporary symbols in object streamer 2015-05-06 21:34:34 +00:00
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp
MachineBlockFrequencyInfo.cpp
MachineBlockPlacement.cpp [MBP] Spell the conditions the same way through out this if statement. 2015-04-15 13:39:42 +00:00
MachineBranchProbabilityInfo.cpp
MachineCombiner.cpp
MachineCopyPropagation.cpp [MachineCopyPropagation] Handle undef flags conservatively so that we do not 2015-04-23 21:17:39 +00:00
MachineCSE.cpp MachineCSE: Add a target query for the LookAheadLimit heurisitic 2015-05-09 00:56:07 +00:00
MachineDominanceFrontier.cpp
MachineDominators.cpp
MachineFunction.cpp [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Add ChangeTo* to MachineOperand for symbols 2015-05-06 17:05:54 +00:00
MachineInstrBundle.cpp
MachineLICM.cpp [MachineLICM] Use newer model of register pressure sets. 2015-04-14 11:56:25 +00:00
MachineLoopInfo.cpp
MachineModuleInfo.cpp Re-commit "[SEH] Remove the old __C_specific_handler code now that WinEHPrepare works" 2015-04-23 23:22:33 +00:00
MachineModuleInfoImpls.cpp Clear the stub map in getSortedStubs. 2015-04-07 12:59:28 +00:00
MachinePassRegistry.cpp
MachinePostDominators.cpp
MachineRegionInfo.cpp
MachineRegisterInfo.cpp
MachineScheduler.cpp
MachineSink.cpp Clear kill flags on all used registers when sinking instructions. 2015-05-08 17:54:32 +00:00
MachineSSAUpdater.cpp
MachineTraceMetrics.cpp Add range iterators for post order and inverse post order. Use them 2015-04-15 17:41:42 +00:00
MachineVerifier.cpp Fix typo 2015-04-30 23:20:56 +00:00
Makefile
module.modulemap
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
PeepholeOptimizer.cpp
PHIElimination.cpp
PHIEliminationUtils.cpp
PHIEliminationUtils.h
PostRASchedulerList.cpp Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
PseudoSourceValue.cpp
README.txt
RegAllocBase.cpp
RegAllocBase.h
RegAllocBasic.cpp
RegAllocFast.cpp IR: Give 'DI' prefix to debug info metadata 2015-04-29 16:38:44 +00:00
RegAllocGreedy.cpp RegAllocGreedy: Allow target to specify register class ordering. 2015-03-31 19:57:53 +00:00
RegAllocPBQP.cpp
RegisterClassInfo.cpp
RegisterCoalescer.cpp [RegisterCoalescer] Make sure each live-range has only one component, as 2015-05-06 22:41:50 +00:00
RegisterCoalescer.h
RegisterPressure.cpp
RegisterScavenging.cpp
ScheduleDAG.cpp
ScheduleDAGInstrs.cpp CodeGen: ignore DEBUG_VALUE nodes in KILL tagging 2015-05-12 23:36:18 +00:00
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShadowStackGCLowering.cpp [opaque pointer type] API migration for GEP constant factories 2015-04-02 18:55:32 +00:00
ShrinkWrap.cpp [ShrinkWrap] Add (a simplified version) of shrink-wrapping. 2015-05-05 17:38:16 +00:00
SjLjEHPrepare.cpp [opaque pointer type] More GEP API migrations 2015-04-04 21:07:10 +00:00
SlotIndexes.cpp
Spiller.h
SpillPlacement.cpp
SpillPlacement.h Use 'override/final' instead of 'virtual' for overridden methods 2015-04-11 02:11:45 +00:00
SplitKit.cpp
SplitKit.h Fix spelling. 2015-05-02 00:44:07 +00:00
StackColoring.cpp IR: Give 'DI' prefix to debug info metadata 2015-04-29 16:38:44 +00:00
StackMapLivenessAnalysis.cpp
StackMaps.cpp [Statepoints] Support for "patchable" statepoints. 2015-05-12 23:52:24 +00:00
StackProtector.cpp
StackSlotColoring.cpp
StatepointExampleGC.cpp
TailDuplication.cpp Clear kill flags in tail duplication. 2015-05-07 21:48:26 +00:00
TargetFrameLoweringImpl.cpp
TargetInstrInfo.cpp Commute the internal flag on MachineOperands. 2015-04-30 23:14:14 +00:00
TargetLoweringBase.cpp CodeGen: Default overflow operations to expand so we don't have to assume targets are lying 2015-04-29 16:30:46 +00:00
TargetLoweringObjectFileImpl.cpp Implement unique sections with an unique ID. 2015-04-04 18:02:01 +00:00
TargetOptionsImpl.cpp Remove CFIFuncName from TargetOptions as it is currently unused. 2015-04-19 03:21:04 +00:00
TargetRegisterInfo.cpp
TargetSchedule.cpp
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
WinEHPrepare.cpp Fixing memory leak 2015-05-12 00:13:51 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str r4, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.