llvm-6502/include/llvm/CodeGen/SelectionDAGNodes.h

1422 lines
52 KiB
C
Raw Normal View History

//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Value.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
namespace llvm {
class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class SDNode;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;
template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;
/// SDVTList - This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG. Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
const MVT::ValueType *VTs;
unsigned short NumVTs;
};
/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {
//===--------------------------------------------------------------------===//
/// ISD::NodeType enum - This enum defines all of the operators valid in a
/// SelectionDAG.
///
enum NodeType {
// DELETED_NODE - This is an illegal flag value that is used to catch
// errors. This opcode is not a legal opcode for any node.
DELETED_NODE,
// EntryToken - This is the marker used to indicate the start of the region.
EntryToken,
// Token factor - This node takes multiple tokens as input and produces a
// single token result. This is used to represent the fact that the operand
// operators are independent of each other.
TokenFactor,
// AssertSext, AssertZext - These nodes record if a register contains a
// value that has already been zero or sign extended from a narrower type.
// These nodes take two operands. The first is the node that has already
// been extended, and the second is a value type node indicating the width
// of the extension
AssertSext, AssertZext,
// Various leaf nodes.
STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
Constant, ConstantFP,
GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
// TargetConstant* - Like Constant*, but the DAG does not do any folding or
// simplification of the constant.
TargetConstant,
TargetConstantFP,
// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
// anything else with this node, and this is valid in the target-specific
// dag, turning into a GlobalAddress operand.
TargetGlobalAddress,
TargetFrameIndex,
TargetJumpTable,
TargetConstantPool,
TargetExternalSymbol,
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
/// This node represents a target intrinsic function with no side effects.
/// The first operand is the ID number of the intrinsic from the
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
/// node has returns the result of the intrinsic.
INTRINSIC_WO_CHAIN,
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
/// This node represents a target intrinsic function with side effects that
/// returns a result. The first operand is a chain pointer. The second is
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
/// operands to the intrinsic follow. The node has two results, the result
/// of the intrinsic and an output chain.
INTRINSIC_W_CHAIN,
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
/// This node represents a target intrinsic function with side effects that
/// does not return a result. The first operand is a chain pointer. The
/// second is the ID number of the intrinsic from the llvm::Intrinsic
/// namespace. The operands to the intrinsic follow.
INTRINSIC_VOID,
// CopyToReg - This node has three operands: a chain, a register number to
// set to this value, and a value.
CopyToReg,
// CopyFromReg - This node indicates that the input value is a virtual or
// physical register that is defined outside of the scope of this
// SelectionDAG. The register is available from the RegSDNode object.
CopyFromReg,
// UNDEF - An undefined node
UNDEF,
/// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
/// arguments for a function. CC# is a Constant value indicating the
/// calling convention of the function, and ISVARARG is a flag that
/// indicates whether the function is varargs or not. This node has one
/// result value for each incoming argument, plus one for the output chain.
/// It must be custom legalized.
///
FORMAL_ARGUMENTS,
/// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
/// ARG0, SIGN0, ARG1, SIGN1, ... ARGn, SIGNn)
/// This node represents a fully general function call, before the legalizer
/// runs. This has one result value for each argument / signness pair, plus
/// a chain result. It must be custom legalized.
CALL,
// EXTRACT_ELEMENT - This is used to get the first or second (determined by
// a Constant, which is required to be operand #1), element of the aggregate
// value specified as operand #0. This is only for use before legalization,
// for values that will be broken into multiple registers.
EXTRACT_ELEMENT,
// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
// two values of the same integer value type, this produces a value twice as
// big. Like EXTRACT_ELEMENT, this can only be used before legalization.
BUILD_PAIR,
// MERGE_VALUES - This node takes multiple discrete operands and returns
// them all as its individual results. This nodes has exactly the same
// number of inputs and outputs, and is only valid before legalization.
// This node is useful for some pieces of the code generator that want to
// think about a single node with multiple results, not multiple nodes.
MERGE_VALUES,
// Simple integer binary arithmetic operators.
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
// Carry-setting nodes for multiple precision addition and subtraction.
// These nodes take two operands of the same value type, and produce two
// results. The first result is the normal add or sub result, the second
// result is the carry flag result.
ADDC, SUBC,
// Carry-using nodes for multiple precision addition and subtraction. These
// nodes take three operands: The first two are the normal lhs and rhs to
// the add or sub, and the third is the input carry flag. These nodes
// produce two results; the normal result of the add or sub, and the output
// carry flag. These nodes both read and write a carry flag to allow them
// to them to be chained together for add and sub of arbitrarily large
// values.
ADDE, SUBE,
// Simple binary floating point operators.
FADD, FSUB, FMUL, FDIV, FREM,
// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
// DAG node does not require that X and Y have the same type, just that they
// are both floating point. X and the result must have the same type.
// FCOPYSIGN(f32, f64) is allowed.
FCOPYSIGN,
/// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,..., COUNT,TYPE) - Return a vector
/// with the specified, possibly variable, elements. The number of elements
/// is required to be a power of two.
VBUILD_VECTOR,
/// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
/// with the specified, possibly variable, elements. The number of elements
/// is required to be a power of two.
BUILD_VECTOR,
/// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX, COUNT,TYPE) - Given a vector
/// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
/// return an vector with the specified element of VECTOR replaced with VAL.
/// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
VINSERT_VECTOR_ELT,
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
/// type) with the element at IDX replaced with VAL.
INSERT_VECTOR_ELT,
/// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
/// (an MVT::Vector value) identified by the (potentially variable) element
/// number IDX.
VEXTRACT_VECTOR_ELT,
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
/// (a legal packed type vector) identified by the (potentially variable)
/// element number IDX.
EXTRACT_VECTOR_ELT,
/// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
/// of the same type as VEC1/VEC2. SHUFFLEVEC is a VBUILD_VECTOR of
/// constant int values that indicate which value each result element will
/// get. The elements of VEC1/VEC2 are enumerated in order. This is quite
/// similar to the Altivec 'vperm' instruction, except that the indices must
/// be constants and are in terms of the element size of VEC1/VEC2, not in
/// terms of bytes.
VVECTOR_SHUFFLE,
/// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
/// type as VEC1/VEC2. SHUFFLEVEC is a BUILD_VECTOR of constant int values
/// (regardless of whether its datatype is legal or not) that indicate
/// which value each result element will get. The elements of VEC1/VEC2 are
/// enumerated in order. This is quite similar to the Altivec 'vperm'
/// instruction, except that the indices must be constants and are in terms
/// of the element size of VEC1/VEC2, not in terms of bytes.
VECTOR_SHUFFLE,
/// X = VBIT_CONVERT(Y) and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
/// represents a conversion from or to an ISD::Vector type.
///
/// This is lowered to a BIT_CONVERT of the appropriate input/output types.
/// The input and output are required to have the same size and at least one
/// is required to be a vector (if neither is a vector, just use
/// BIT_CONVERT).
///
/// If the result is a vector, this takes three operands (like any other
/// vector producer) which indicate the size and type of the vector result.
/// Otherwise it takes one input.
VBIT_CONVERT,
/// BINOP(LHS, RHS, COUNT,TYPE)
/// Simple abstract vector operators. Unlike the integer and floating point
/// binary operators, these nodes also take two additional operands:
/// a constant element count, and a value type node indicating the type of
/// the elements. The order is count, type, op0, op1. All vector opcodes,
/// including VLOAD and VConstant must currently have count and type as
/// their last two operands.
VADD, VSUB, VMUL, VSDIV, VUDIV,
VAND, VOR, VXOR,
/// VSELECT(COND,LHS,RHS, COUNT,TYPE) - Select for MVT::Vector values.
/// COND is a boolean value. This node return LHS if COND is true, RHS if
/// COND is false.
VSELECT,
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
/// scalar value into the low element of the resultant vector type. The top
/// elements of the vector are undefined.
SCALAR_TO_VECTOR,
// MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
// an unsigned/signed value of type i[2*n], then return the top part.
MULHU, MULHS,
// Bitwise operators - logical and, logical or, logical xor, shift left,
// shift right algebraic (shift in sign bits), shift right logical (shift in
// zeroes), rotate left, rotate right, and byteswap.
AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
// Counting operators
CTTZ, CTLZ, CTPOP,
// Select(COND, TRUEVAL, FALSEVAL)
SELECT,
// Select with condition operator - This selects between a true value and
// a false value (ops #2 and #3) based on the boolean result of comparing
// the lhs and rhs (ops #0 and #1) of a conditional expression with the
// condition code in op #4, a CondCodeSDNode.
SELECT_CC,
// SetCC operator - This evaluates to a boolean (i1) true value if the
// condition is true. The operands to this are the left and right operands
// to compare (ops #0, and #1) and the condition code to compare them with
// (op #2) as a CondCodeSDNode.
SETCC,
// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
// integer shift operations, just like ADD/SUB_PARTS. The operation
// ordering is:
// [Lo,Hi] = op [LoLHS,HiLHS], Amt
SHL_PARTS, SRA_PARTS, SRL_PARTS,
// Conversion operators. These are all single input single output
// operations. For all of these, the result type must be strictly
// wider or narrower (depending on the operation) than the source
// type.
// SIGN_EXTEND - Used for integer types, replicating the sign bit
// into new bits.
SIGN_EXTEND,
// ZERO_EXTEND - Used for integer types, zeroing the new bits.
ZERO_EXTEND,
// ANY_EXTEND - Used for integer types. The high bits are undefined.
ANY_EXTEND,
// TRUNCATE - Completely drop the high bits.
TRUNCATE,
// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
// depends on the first letter) to floating point.
SINT_TO_FP,
UINT_TO_FP,
// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
// sign extend a small value in a large integer register (e.g. sign
// extending the low 8 bits of a 32-bit register to fill the top 24 bits
// with the 7th bit). The size of the smaller type is indicated by the 1th
// operand, a ValueType node.
SIGN_EXTEND_INREG,
// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
// integer.
FP_TO_SINT,
FP_TO_UINT,
// FP_ROUND - Perform a rounding operation from the current
// precision down to the specified precision (currently always 64->32).
FP_ROUND,
// FP_ROUND_INREG - This operator takes a floating point register, and
// rounds it to a floating point value. It then promotes it and returns it
// in a register of the same size. This operation effectively just discards
// excess precision. The type to round down to is specified by the 1th
// operation, a VTSDNode (currently always 64->32->64).
FP_ROUND_INREG,
// FP_EXTEND - Extend a smaller FP type into a larger FP type.
FP_EXTEND,
// BIT_CONVERT - Theis operator converts between integer and FP values, as
// if one was stored to memory as integer and the other was loaded from the
// same address (or equivalently for vector format conversions, etc). The
// source and result are required to have the same bit size (e.g.
// f32 <-> i32). This can also be used for int-to-int or fp-to-fp
// conversions, but that is a noop, deleted by getNode().
BIT_CONVERT,
// FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
// absolute value, square root, sine and cosine operations.
FNEG, FABS, FSQRT, FSIN, FCOS,
// Other operators. LOAD and STORE have token chains as their first
// operand, then the same operands as an LLVM load/store instruction, then a
// SRCVALUE node that provides alias analysis information.
LOAD, STORE,
// Abstract vector version of LOAD. VLOAD has a constant element count as
// the first operand, followed by a value type node indicating the type of
// the elements, a token chain, a pointer operand, and a SRCVALUE node.
VLOAD,
// EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
// memory and extend them to a larger value (e.g. load a byte into a word
// register). All three of these have four operands, a token chain, a
// pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
// indicating the type to load.
//
// SEXTLOAD loads the integer operand and sign extends it to a larger
// integer result type.
// ZEXTLOAD loads the integer operand and zero extends it to a larger
// integer result type.
// EXTLOAD is used for three things: floating point extending loads,
// integer extending loads [the top bits are undefined], and vector
// extending loads [load into low elt].
EXTLOAD, SEXTLOAD, ZEXTLOAD,
// TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
// value and stores it to memory in one operation. This can be used for
// either integer or floating point operands. The first four operands of
// this are the same as a standard store. The fifth is the ValueType to
// store it as (which will be smaller than the source value).
TRUNCSTORE,
// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
// to a specified boundary. The first operand is the token chain, the
// second is the number of bytes to allocate, and the third is the alignment
// boundary. The size is guaranteed to be a multiple of the stack
// alignment, and the alignment is guaranteed to be bigger than the stack
// alignment (if required) or 0 to get standard stack alignment.
DYNAMIC_STACKALLOC,
// Control flow instructions. These all have token chains.
// BR - Unconditional branch. The first operand is the chain
// operand, the second is the MBB to branch to.
BR,
// BRIND - Indirect branch. The first operand is the chain, the second
// is the value to branch to, which must be of the same type as the target's
// pointer type.
BRIND,
// BRCOND - Conditional branch. The first operand is the chain,
// the second is the condition, the third is the block to branch
// to if the condition is true.
BRCOND,
// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
// that the condition is represented as condition code, and two nodes to
// compare, rather than as a combined SetCC node. The operands in order are
// chain, cc, lhs, rhs, block to branch to if condition is true.
BR_CC,
// RET - Return from function. The first operand is the chain,
// and any subsequent operands are pairs of return value and return value
// signness for the function. This operation can have variable number of
// operands.
RET,
// INLINEASM - Represents an inline asm block. This node always has two
// return values: a chain and a flag result. The inputs are as follows:
// Operand #0 : Input chain.
// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
// Operand #2n+2: A RegisterNode.
// Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
// Operand #last: Optional, an incoming flag.
INLINEASM,
// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
// value, the same type as the pointer type for the system, and an output
// chain.
STACKSAVE,
// STACKRESTORE has two operands, an input chain and a pointer to restore to
// it returns an output chain.
STACKRESTORE,
// MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
// correspond to the operands of the LLVM intrinsic functions. The only
// result is a token chain. The alignment argument is guaranteed to be a
// Constant node.
MEMSET,
MEMMOVE,
MEMCPY,
// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
// a call sequence, and carry arbitrary information that target might want
// to know. The first operand is a chain, the rest are specified by the
// target and not touched by the DAG optimizers.
CALLSEQ_START, // Beginning of a call sequence
CALLSEQ_END, // End of a call sequence
// VAARG - VAARG has three operands: an input chain, a pointer, and a
// SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
VAARG,
// VACOPY - VACOPY has five operands: an input chain, a destination pointer,
// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
// source.
VACOPY,
// VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
// pointer, and a SRCVALUE.
VAEND, VASTART,
// SRCVALUE - This corresponds to a Value*, and is used to associate memory
// locations with their value. This allows one use alias analysis
// information in the backend.
SRCVALUE,
// PCMARKER - This corresponds to the pcmarker intrinsic.
PCMARKER,
// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
// The only operand is a chain and a value and a chain are produced. The
// value is the contents of the architecture specific cycle counter like
// register (or other high accuracy low latency clock source)
READCYCLECOUNTER,
// HANDLENODE node - Used as a handle for various purposes.
HANDLENODE,
// LOCATION - This node is used to represent a source location for debug
// info. It takes token chain as input, then a line number, then a column
// number, then a filename, then a working dir. It produces a token chain
// as output.
LOCATION,
// DEBUG_LOC - This node is used to represent source line information
// embedded in the code. It takes a token chain as input, then a line
// number, then a column then a file id (provided by MachineDebugInfo.) It
// produces a token chain as output.
DEBUG_LOC,
// DEBUG_LABEL - This node is used to mark a location in the code where a
// label should be generated for use by the debug information. It takes a
// token chain as input and then a unique id (provided by MachineDebugInfo.)
// It produces a token chain as output.
DEBUG_LABEL,
// BUILTIN_OP_END - This must be the last enum value in this list.
BUILTIN_OP_END
};
/// Node predicates
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool isBuildVectorAllOnes(const SDNode *N);
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool isBuildVectorAllZeros(const SDNode *N);
//===--------------------------------------------------------------------===//
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
/// below work out, when considering SETFALSE (something that never exists
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
/// to. If the "N" column is 1, the result of the comparison is undefined if
/// the input is a NAN.
///
/// All of these (except for the 'always folded ops') should be handled for
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
///
/// Note that these are laid out in a specific order to allow bit-twiddling
/// to transform conditions.
enum CondCode {
// Opcode N U L G E Intuitive operation
SETFALSE, // 0 0 0 0 Always false (always folded)
SETOEQ, // 0 0 0 1 True if ordered and equal
SETOGT, // 0 0 1 0 True if ordered and greater than
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
SETOLT, // 0 1 0 0 True if ordered and less than
SETOLE, // 0 1 0 1 True if ordered and less than or equal
SETONE, // 0 1 1 0 True if ordered and operands are unequal
SETO, // 0 1 1 1 True if ordered (no nans)
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
SETUEQ, // 1 0 0 1 True if unordered or equal
SETUGT, // 1 0 1 0 True if unordered or greater than
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
SETULT, // 1 1 0 0 True if unordered or less than
SETULE, // 1 1 0 1 True if unordered, less than, or equal
SETUNE, // 1 1 1 0 True if unordered or not equal
SETTRUE, // 1 1 1 1 Always true (always folded)
// Don't care operations: undefined if the input is a nan.
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
SETEQ, // 1 X 0 0 1 True if equal
SETGT, // 1 X 0 1 0 True if greater than
SETGE, // 1 X 0 1 1 True if greater than or equal
SETLT, // 1 X 1 0 0 True if less than
SETLE, // 1 X 1 0 1 True if less than or equal
SETNE, // 1 X 1 1 0 True if not equal
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
SETCC_INVALID // Marker value.
};
/// isSignedIntSetCC - Return true if this is a setcc instruction that
/// performs a signed comparison when used with integer operands.
inline bool isSignedIntSetCC(CondCode Code) {
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
}
/// isUnsignedIntSetCC - Return true if this is a setcc instruction that
/// performs an unsigned comparison when used with integer operands.
inline bool isUnsignedIntSetCC(CondCode Code) {
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
}
/// isTrueWhenEqual - Return true if the specified condition returns true if
/// the two operands to the condition are equal. Note that if one of the two
/// operands is a NaN, this value is meaningless.
inline bool isTrueWhenEqual(CondCode Cond) {
return ((int)Cond & 1) != 0;
}
/// getUnorderedFlavor - This function returns 0 if the condition is always
/// false if an operand is a NaN, 1 if the condition is always true if the
/// operand is a NaN, and 2 if the condition is undefined if the operand is a
/// NaN.
inline unsigned getUnorderedFlavor(CondCode Cond) {
return ((int)Cond >> 3) & 3;
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
CondCode getSetCCSwappedOperands(CondCode Operation);
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
/// getSetCCAndOperation - Return the result of a logical AND between
/// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns SETCC_INVALID if it is not possible to represent the
/// resultant comparison.
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
} // end llvm::ISD namespace
//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
SDNode *Val; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
SDOperand() : Val(0), ResNo(0) {}
SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
bool operator==(const SDOperand &O) const {
return Val == O.Val && ResNo == O.ResNo;
}
bool operator!=(const SDOperand &O) const {
return !operator==(O);
}
bool operator<(const SDOperand &O) const {
return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
}
SDOperand getValue(unsigned R) const {
return SDOperand(Val, R);
}
// isOperand - Return true if this node is an operand of N.
bool isOperand(SDNode *N) const;
/// getValueType - Return the ValueType of the referenced return value.
///
inline MVT::ValueType getValueType() const;
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNumOperands() const;
inline const SDOperand &getOperand(unsigned i) const;
inline bool isTargetOpcode() const;
inline unsigned getTargetOpcode() const;
/// hasOneUse - Return true if there is exactly one operation using this
/// result value of the defining operator.
inline bool hasOneUse() const;
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
template<> struct simplify_type<const SDOperand> {
typedef SDNode* SimpleType;
static SimpleType getSimplifiedValue(const SDOperand &Val) {
return static_cast<SimpleType>(Val.Val);
}
};
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode {
/// NodeType - The operation that this node performs.
///
unsigned short NodeType;
/// NodeId - Unique id per SDNode in the DAG.
int NodeId;
/// OperandList - The values that are used by this operation.
///
SDOperand *OperandList;
/// ValueList - The types of the values this node defines. SDNode's may
/// define multiple values simultaneously.
const MVT::ValueType *ValueList;
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
unsigned short NumOperands, NumValues;
/// Prev/Next pointers - These pointers form the linked list of of the
/// AllNodes list in the current DAG.
SDNode *Prev, *Next;
friend struct ilist_traits<SDNode>;
/// NextInBucket - This is used by the SelectionDAGCSEMap.
void *NextInBucket;
/// Uses - These are all of the SDNode's that use a value produced by this
/// node.
SmallVector<SDNode*,3> Uses;
// Out-of-line virtual method to give class a home.
virtual void ANCHOR();
public:
virtual ~SDNode() {
assert(NumOperands == 0 && "Operand list not cleared before deletion");
assert(NextInBucket == 0 && "Still in CSEMap?");
NodeType = ISD::DELETED_NODE;
}
//===--------------------------------------------------------------------===//
// Accessors
//
unsigned getOpcode() const { return NodeType; }
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
unsigned getTargetOpcode() const {
assert(isTargetOpcode() && "Not a target opcode!");
return NodeType - ISD::BUILTIN_OP_END;
}
size_t use_size() const { return Uses.size(); }
bool use_empty() const { return Uses.empty(); }
bool hasOneUse() const { return Uses.size() == 1; }
/// getNodeId - Return the unique node id.
///
int getNodeId() const { return NodeId; }
typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
use_iterator use_begin() const { return Uses.begin(); }
use_iterator use_end() const { return Uses.end(); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
// isOnlyUse - Return true if this node is the only use of N.
bool isOnlyUse(SDNode *N) const;
// isOperand - Return true if this node is an operand of N.
bool isOperand(SDNode *N) const;
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return NumOperands; }
const SDOperand &getOperand(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return OperandList[Num];
}
typedef const SDOperand* op_iterator;
op_iterator op_begin() const { return OperandList; }
op_iterator op_end() const { return OperandList+NumOperands; }
SDVTList getVTList() const {
SDVTList X = { ValueList, NumValues };
return X;
};
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return NumValues; }
/// getValueType - Return the type of a specified result.
///
MVT::ValueType getValueType(unsigned ResNo) const {
assert(ResNo < NumValues && "Illegal result number!");
return ValueList[ResNo];
}
typedef const MVT::ValueType* value_iterator;
value_iterator value_begin() const { return ValueList; }
value_iterator value_end() const { return ValueList+NumValues; }
/// getOperationName - Return the opcode of this operation for printing.
///
const char* getOperationName(const SelectionDAG *G = 0) const;
void dump() const;
void dump(const SelectionDAG *G) const;
static bool classof(const SDNode *) { return true; }
/// NextInBucket accessors, these are private to SelectionDAGCSEMap.
void *getNextInBucket() const { return NextInBucket; }
void SetNextInBucket(void *N) { NextInBucket = N; }
protected:
friend class SelectionDAG;
/// getValueTypeList - Return a pointer to the specified value type.
///
static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeId(-1) {
OperandList = 0; NumOperands = 0;
ValueList = getValueTypeList(VT);
NumValues = 1;
Prev = 0; Next = 0;
NextInBucket = 0;
}
SDNode(unsigned NT, SDOperand Op)
: NodeType(NT), NodeId(-1) {
OperandList = new SDOperand[1];
OperandList[0] = Op;
NumOperands = 1;
Op.Val->Uses.push_back(this);
ValueList = 0;
NumValues = 0;
Prev = 0; Next = 0;
NextInBucket = 0;
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2)
: NodeType(NT), NodeId(-1) {
OperandList = new SDOperand[2];
OperandList[0] = N1;
OperandList[1] = N2;
NumOperands = 2;
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
ValueList = 0;
NumValues = 0;
Prev = 0; Next = 0;
NextInBucket = 0;
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
: NodeType(NT), NodeId(-1) {
OperandList = new SDOperand[3];
OperandList[0] = N1;
OperandList[1] = N2;
OperandList[2] = N3;
NumOperands = 3;
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this);
ValueList = 0;
NumValues = 0;
Prev = 0; Next = 0;
NextInBucket = 0;
}
SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
: NodeType(NT), NodeId(-1) {
OperandList = new SDOperand[4];
OperandList[0] = N1;
OperandList[1] = N2;
OperandList[2] = N3;
OperandList[3] = N4;
NumOperands = 4;
N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
ValueList = 0;
NumValues = 0;
Prev = 0; Next = 0;
NextInBucket = 0;
}
SDNode(unsigned Opc, const SDOperand *Ops, unsigned NumOps)
: NodeType(Opc), NodeId(-1) {
NumOperands = NumOps;
OperandList = new SDOperand[NumOperands];
for (unsigned i = 0, e = NumOps; i != e; ++i) {
OperandList[i] = Ops[i];
SDNode *N = OperandList[i].Val;
N->Uses.push_back(this);
}
ValueList = 0;
NumValues = 0;
Prev = 0; Next = 0;
NextInBucket = 0;
}
/// MorphNodeTo - This clears the return value and operands list, and sets the
/// opcode of the node to the specified value. This should only be used by
/// the SelectionDAG class.
void MorphNodeTo(unsigned Opc) {
NodeType = Opc;
ValueList = 0;
NumValues = 0;
// Clear the operands list, updating used nodes to remove this from their
// use list.
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
I->Val->removeUser(this);
delete [] OperandList;
OperandList = 0;
NumOperands = 0;
}
void setValueTypes(SDVTList L) {
assert(NumValues == 0 && "Should not have values yet!");
ValueList = L.VTs;
NumValues = L.NumVTs;
}
void setOperands(SDOperand Op0) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[1];
OperandList[0] = Op0;
NumOperands = 1;
Op0.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[2];
OperandList[0] = Op0;
OperandList[1] = Op1;
NumOperands = 2;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[3];
OperandList[0] = Op0;
OperandList[1] = Op1;
OperandList[2] = Op2;
NumOperands = 3;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[4];
OperandList[0] = Op0;
OperandList[1] = Op1;
OperandList[2] = Op2;
OperandList[3] = Op3;
NumOperands = 4;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[5];
OperandList[0] = Op0;
OperandList[1] = Op1;
OperandList[2] = Op2;
OperandList[3] = Op3;
OperandList[4] = Op4;
NumOperands = 5;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
Op4.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[6];
OperandList[0] = Op0;
OperandList[1] = Op1;
OperandList[2] = Op2;
OperandList[3] = Op3;
OperandList[4] = Op4;
OperandList[5] = Op5;
NumOperands = 6;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5, SDOperand Op6) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[7];
OperandList[0] = Op0;
OperandList[1] = Op1;
OperandList[2] = Op2;
OperandList[3] = Op3;
OperandList[4] = Op4;
OperandList[5] = Op5;
OperandList[6] = Op6;
NumOperands = 7;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
Op6.Val->Uses.push_back(this);
}
void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
assert(NumOperands == 0 && "Should not have operands yet!");
OperandList = new SDOperand[8];
OperandList[0] = Op0;
OperandList[1] = Op1;
OperandList[2] = Op2;
OperandList[3] = Op3;
OperandList[4] = Op4;
OperandList[5] = Op5;
OperandList[6] = Op6;
OperandList[7] = Op7;
NumOperands = 8;
Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
}
void addUser(SDNode *User) {
Uses.push_back(User);
}
void removeUser(SDNode *User) {
// Remove this user from the operand's use list.
for (unsigned i = Uses.size(); ; --i) {
assert(i != 0 && "Didn't find user!");
if (Uses[i-1] == User) {
Uses[i-1] = Uses.back();
Uses.pop_back();
return;
}
}
}
void setNodeId(int Id) {
NodeId = Id;
}
};
// Define inline functions from the SDOperand class.
inline unsigned SDOperand::getOpcode() const {
return Val->getOpcode();
}
inline MVT::ValueType SDOperand::getValueType() const {
return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
return Val->getOperand(i);
}
inline bool SDOperand::isTargetOpcode() const {
return Val->isTargetOpcode();
}
inline unsigned SDOperand::getTargetOpcode() const {
return Val->getTargetOpcode();
}
inline bool SDOperand::hasOneUse() const {
return Val->hasNUsesOfValue(1, ResNo);
}
/// HandleSDNode - This class is used to form a handle around another node that
/// is persistant and is updated across invocations of replaceAllUsesWith on its
/// operand. This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
public:
HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
~HandleSDNode() {
MorphNodeTo(ISD::HANDLENODE); // Drops operand uses.
}
SDOperand getValue() const { return getOperand(0); }
};
class StringSDNode : public SDNode {
std::string Value;
protected:
friend class SelectionDAG;
StringSDNode(const std::string &val)
: SDNode(ISD::STRING, MVT::Other), Value(val) {
}
public:
const std::string &getValue() const { return Value; }
static bool classof(const StringSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::STRING;
}
};
class ConstantSDNode : public SDNode {
uint64_t Value;
protected:
friend class SelectionDAG;
ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
}
public:
uint64_t getValue() const { return Value; }
int64_t getSignExtended() const {
unsigned Bits = MVT::getSizeInBits(getValueType(0));
return ((int64_t)Value << (64-Bits)) >> (64-Bits);
}
bool isNullValue() const { return Value == 0; }
bool isAllOnesValue() const {
return Value == MVT::getIntVTBitMask(getValueType(0));
}
static bool classof(const ConstantSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
class ConstantFPSDNode : public SDNode {
double Value;
protected:
friend class SelectionDAG;
ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
Value(val) {
}
public:
double getValue() const { return Value; }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool isExactlyValue(double V) const;
static bool classof(const ConstantFPSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP ||
N->getOpcode() == ISD::TargetConstantFP;
}
};
class GlobalAddressSDNode : public SDNode {
GlobalValue *TheGlobal;
int Offset;
protected:
friend class SelectionDAG;
GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
int o=0)
: SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
Offset(o) {
TheGlobal = const_cast<GlobalValue*>(GA);
}
public:
GlobalValue *getGlobal() const { return TheGlobal; }
int getOffset() const { return Offset; }
static bool classof(const GlobalAddressSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress;
}
};
class FrameIndexSDNode : public SDNode {
int FI;
protected:
friend class SelectionDAG;
FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
public:
int getIndex() const { return FI; }
static bool classof(const FrameIndexSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
class JumpTableSDNode : public SDNode {
int JTI;
protected:
friend class SelectionDAG;
JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
JTI(jti) {}
public:
int getIndex() const { return JTI; }
static bool classof(const JumpTableSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::JumpTable ||
N->getOpcode() == ISD::TargetJumpTable;
}
};
class ConstantPoolSDNode : public SDNode {
Constant *C;
int Offset;
unsigned Alignment;
protected:
friend class SelectionDAG;
ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
int o=0)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
C(c), Offset(o), Alignment(0) {}
ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
unsigned Align)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
C(c), Offset(o), Alignment(Align) {}
public:
Constant *get() const { return C; }
int getOffset() const { return Offset; }
// Return the alignment of this constant pool object, which is either 0 (for
// default alignment) or log2 of the desired value.
unsigned getAlignment() const { return Alignment; }
static bool classof(const ConstantPoolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
class BasicBlockSDNode : public SDNode {
MachineBasicBlock *MBB;
protected:
friend class SelectionDAG;
BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const BasicBlockSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
class SrcValueSDNode : public SDNode {
const Value *V;
int offset;
protected:
friend class SelectionDAG;
SrcValueSDNode(const Value* v, int o)
: SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
public:
const Value *getValue() const { return V; }
int getOffset() const { return offset; }
static bool classof(const SrcValueSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class RegisterSDNode : public SDNode {
unsigned Reg;
protected:
friend class SelectionDAG;
RegisterSDNode(unsigned reg, MVT::ValueType VT)
: SDNode(ISD::Register, VT), Reg(reg) {}
public:
unsigned getReg() const { return Reg; }
static bool classof(const RegisterSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class ExternalSymbolSDNode : public SDNode {
const char *Symbol;
protected:
friend class SelectionDAG;
ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
Symbol(Sym) {
}
public:
const char *getSymbol() const { return Symbol; }
static bool classof(const ExternalSymbolSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol ||
N->getOpcode() == ISD::TargetExternalSymbol;
}
};
class CondCodeSDNode : public SDNode {
ISD::CondCode Condition;
protected:
friend class SelectionDAG;
CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const CondCodeSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
MVT::ValueType ValueType;
protected:
friend class SelectionDAG;
VTSDNode(MVT::ValueType VT)
: SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
public:
MVT::ValueType getVT() const { return ValueType; }
static bool classof(const VTSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
SDNode *Node;
unsigned Operand;
SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) {
assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
Operand = I.Operand;
return *this;
}
pointer operator*() const {
return Node->getOperand(Operand).Val;
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
typedef SDNode NodeType;
typedef SDNodeIterator ChildIteratorType;
static inline NodeType *getEntryNode(SDNode *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return SDNodeIterator::begin(N);
}
static inline ChildIteratorType child_end(NodeType *N) {
return SDNodeIterator::end(N);
}
};
template<>
struct ilist_traits<SDNode> {
static SDNode *getPrev(const SDNode *N) { return N->Prev; }
static SDNode *getNext(const SDNode *N) { return N->Next; }
static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
static SDNode *createSentinel() {
return new SDNode(ISD::EntryToken, MVT::Other);
}
static void destroySentinel(SDNode *N) { delete N; }
//static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
void addNodeToList(SDNode *NTy) {}
void removeNodeFromList(SDNode *NTy) {}
void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
const ilist_iterator<SDNode> &X,
const ilist_iterator<SDNode> &Y) {}
};
} // end llvm namespace
#endif