llvm-6502/lib/Target/ARM/AsmParser/ARMAsmParser.cpp

1377 lines
44 KiB
C++
Raw Normal View History

//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMSubtarget.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace llvm;
/// Shift types used for register controlled shifts in ARM memory addressing.
enum ShiftType {
Lsl,
Lsr,
Asr,
Ror,
Rrx
};
namespace {
class ARMOperand;
class ARMAsmParser : public TargetAsmParser {
MCAsmParser &Parser;
TargetMachine &TM;
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
int TryParseRegister();
bool TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
bool ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
bool ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &);
bool ParsePrefix(MCSymbolRefExpr::VariantKind &RefKind);
const MCExpr *ApplyPrefixToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant);
bool ParseMemoryOffsetReg(bool &Negative,
bool &OffsetRegShifted,
enum ShiftType &ShiftType,
const MCExpr *&ShiftAmount,
const MCExpr *&Offset,
bool &OffsetIsReg,
int &OffsetRegNum,
SMLoc &E);
bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveThumb(SMLoc L);
bool ParseDirectiveThumbFunc(SMLoc L);
bool ParseDirectiveCode(SMLoc L);
bool ParseDirectiveSyntax(SMLoc L);
bool MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out);
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"
/// }
public:
ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
: TargetAsmParser(T), Parser(_Parser), TM(_TM) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(
&TM.getSubtarget<ARMSubtarget>()));
}
virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
} // end anonymous namespace
namespace {
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
class ARMOperand : public MCParsedAsmOperand {
enum KindTy {
CondCode,
CCOut,
Immediate,
Memory,
Register,
RegisterList,
DPRRegisterList,
SPRRegisterList,
Token
} Kind;
SMLoc StartLoc, EndLoc;
SmallVector<unsigned, 8> Registers;
union {
struct {
ARMCC::CondCodes Val;
} CC;
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNum;
} Reg;
struct {
const MCExpr *Val;
} Imm;
/// Combined record for all forms of ARM address expressions.
struct {
unsigned BaseRegNum;
unsigned OffsetRegNum; // used when OffsetIsReg is true
const MCExpr *Offset; // used when OffsetIsReg is false
const MCExpr *ShiftAmount; // used when OffsetRegShifted is true
enum ShiftType ShiftType; // used when OffsetRegShifted is true
unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true
unsigned Preindexed : 1;
unsigned Postindexed : 1;
unsigned OffsetIsReg : 1;
unsigned Negative : 1; // only used when OffsetIsReg is true
unsigned Writeback : 1;
} Mem;
};
ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case CondCode:
CC = o.CC;
break;
case Token:
Tok = o.Tok;
break;
case CCOut:
case Register:
Reg = o.Reg;
break;
case RegisterList:
case DPRRegisterList:
case SPRRegisterList:
Registers = o.Registers;
break;
case Immediate:
Imm = o.Imm;
break;
case Memory:
Mem = o.Mem;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
ARMCC::CondCodes getCondCode() const {
assert(Kind == CondCode && "Invalid access!");
return CC.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == Register || Kind == CCOut) && "Invalid access!");
return Reg.RegNum;
}
const SmallVectorImpl<unsigned> &getRegList() const {
assert((Kind == RegisterList || Kind == DPRRegisterList ||
Kind == SPRRegisterList) && "Invalid access!");
return Registers;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
bool isCondCode() const { return Kind == CondCode; }
bool isCCOut() const { return Kind == CCOut; }
bool isImm() const { return Kind == Immediate; }
bool isReg() const { return Kind == Register; }
bool isRegList() const { return Kind == RegisterList; }
bool isDPRRegList() const { return Kind == DPRRegisterList; }
bool isSPRRegList() const { return Kind == SPRRegisterList; }
bool isToken() const { return Kind == Token; }
bool isMemory() const { return Kind == Memory; }
bool isMemMode5() const {
if (!isMemory() || Mem.OffsetIsReg || Mem.OffsetRegShifted ||
Mem.Writeback || Mem.Negative)
return false;
// If there is an offset expression, make sure it's valid.
if (!Mem.Offset) return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.Offset);
if (!CE) return false;
// The offset must be a multiple of 4 in the range 0-1020.
int64_t Value = CE->getValue();
return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020);
}
bool isMemModeRegThumb() const {
if (!isMemory() || (!Mem.OffsetIsReg && !Mem.Offset) || Mem.Writeback)
return false;
return !Mem.Offset || !isa<MCConstantExpr>(Mem.Offset);
}
bool isMemModeImmThumb() const {
if (!isMemory() || (!Mem.OffsetIsReg && !Mem.Offset) || Mem.Writeback)
return false;
if (!Mem.Offset) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.Offset);
if (!CE) return false;
// The offset must be a multiple of 4 in the range 0-124.
uint64_t Value = CE->getValue();
return ((Value & 0x3) == 0 && Value <= 124);
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
Inst.addOperand(MCOperand::CreateReg(RegNum));
}
void addCCOutOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ++I)
Inst.addOperand(MCOperand::CreateReg(*I));
}
void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMemMode5Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemMode5() && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
assert(!Mem.OffsetIsReg && "Invalid mode 5 operand");
// FIXME: #-0 is encoded differently than #0. Does the parser preserve
// the difference?
if (Mem.Offset) {
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.Offset);
assert(CE && "Non-constant mode 5 offset operand!");
// The MCInst offset operand doesn't include the low two bits (like
// the instruction encoding).
int64_t Offset = CE->getValue() / 4;
if (Offset >= 0)
Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add,
Offset)));
else
Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub,
-Offset)));
} else {
Inst.addOperand(MCOperand::CreateImm(0));
}
}
void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
Inst.addOperand(MCOperand::CreateReg(Mem.OffsetRegNum));
}
void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum));
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Mem.Offset);
assert(CE && "Non-constant mode offset operand!");
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
}
virtual void dump(raw_ostream &OS) const;
static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
ARMOperand *Op = new ARMOperand(CondCode);
Op->CC.Val = CC;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
ARMOperand *Op = new ARMOperand(CCOut);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
ARMOperand *Op = new ARMOperand(Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *
CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
SMLoc StartLoc, SMLoc EndLoc) {
KindTy Kind = RegisterList;
if (ARM::DPRRegClass.contains(Regs.front().first))
Kind = DPRRegisterList;
else if (ARM::SPRRegClass.contains(Regs.front().first))
Kind = SPRRegisterList;
ARMOperand *Op = new ARMOperand(Kind);
for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
I = Regs.begin(), E = Regs.end(); I != E; ++I)
Op->Registers.push_back(I->first);
array_pod_sort(Op->Registers.begin(), Op->Registers.end());
Op->StartLoc = StartLoc;
Op->EndLoc = EndLoc;
return Op;
}
static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
const MCExpr *Offset, unsigned OffsetRegNum,
bool OffsetRegShifted, enum ShiftType ShiftType,
const MCExpr *ShiftAmount, bool Preindexed,
bool Postindexed, bool Negative, bool Writeback,
SMLoc S, SMLoc E) {
ARMOperand *Op = new ARMOperand(Memory);
Op->Mem.BaseRegNum = BaseRegNum;
Op->Mem.OffsetIsReg = OffsetIsReg;
Op->Mem.Offset = Offset;
Op->Mem.OffsetRegNum = OffsetRegNum;
Op->Mem.OffsetRegShifted = OffsetRegShifted;
Op->Mem.ShiftType = ShiftType;
Op->Mem.ShiftAmount = ShiftAmount;
Op->Mem.Preindexed = Preindexed;
Op->Mem.Postindexed = Postindexed;
Op->Mem.Negative = Negative;
Op->Mem.Writeback = Writeback;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
};
} // end anonymous namespace.
void ARMOperand::dump(raw_ostream &OS) const {
switch (Kind) {
case CondCode:
OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
break;
case CCOut:
OS << "<ccout " << getReg() << ">";
break;
case Immediate:
getImm()->print(OS);
break;
case Memory:
OS << "<memory>";
break;
case Register:
OS << "<register " << getReg() << ">";
break;
case RegisterList:
case DPRRegisterList:
case SPRRegisterList: {
OS << "<register_list ";
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ) {
OS << *I;
if (++I < E) OS << ", ";
}
OS << ">";
break;
}
case Token:
OS << "'" << getToken() << "'";
break;
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
/// Try to parse a register name. The token must be an Identifier when called,
/// and if it is a register name the token is eaten and the register number is
/// returned. Otherwise return -1.
///
int ARMAsmParser::TryParseRegister() {
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
// FIXME: Validate register for the current architecture; we have to do
// validation later, so maybe there is no need for this here.
unsigned RegNum = MatchRegisterName(Tok.getString());
if (RegNum == 0)
return -1;
Parser.Lex(); // Eat identifier token.
return RegNum;
}
/// Try to parse a register name. The token must be an Identifier when called.
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
/// if there is a "writeback". 'true' if it's not a register.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::
TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S = Parser.getTok().getLoc();
int RegNo = TryParseRegister();
if (RegNo == -1)
return true;
Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
ExclaimTok.getLoc()));
Parser.Lex(); // Eat exclaim token
}
return false;
}
/// Parse a register list, return it if successful else return null. The first
/// token must be a '{' when called.
bool ARMAsmParser::
ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
assert(Parser.getTok().is(AsmToken::LCurly) &&
"Token is not a Left Curly Brace");
SMLoc S = Parser.getTok().getLoc();
// Read the rest of the registers in the list.
unsigned PrevRegNum = 0;
SmallVector<std::pair<unsigned, SMLoc>, 32> Registers;
do {
bool IsRange = Parser.getTok().is(AsmToken::Minus);
Parser.Lex(); // Eat non-identifier token.
const AsmToken &RegTok = Parser.getTok();
SMLoc RegLoc = RegTok.getLoc();
if (RegTok.isNot(AsmToken::Identifier)) {
Error(RegLoc, "register expected");
return true;
}
int RegNum = TryParseRegister();
if (RegNum == -1) {
Error(RegLoc, "register expected");
return true;
}
if (IsRange) {
int Reg = PrevRegNum;
do {
++Reg;
Registers.push_back(std::make_pair(Reg, RegLoc));
} while (Reg != RegNum);
} else {
Registers.push_back(std::make_pair(RegNum, RegLoc));
}
PrevRegNum = RegNum;
} while (Parser.getTok().is(AsmToken::Comma) ||
Parser.getTok().is(AsmToken::Minus));
// Process the right curly brace of the list.
const AsmToken &RCurlyTok = Parser.getTok();
if (RCurlyTok.isNot(AsmToken::RCurly)) {
Error(RCurlyTok.getLoc(), "'}' expected");
return true;
}
SMLoc E = RCurlyTok.getLoc();
Parser.Lex(); // Eat right curly brace token.
// Verify the register list.
SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
RI = Registers.begin(), RE = Registers.end();
DenseMap<unsigned, bool> RegMap;
RegMap[RI->first] = true;
unsigned HighRegNum = RI->first;
bool EmittedWarning = false;
for (++RI; RI != RE; ++RI) {
const std::pair<unsigned, SMLoc> &RegInfo = *RI;
unsigned Reg = RegInfo.first;
if (RegMap[Reg]) {
Error(RegInfo.second, "register duplicated in register list");
return true;
}
if (!EmittedWarning && Reg < HighRegNum)
Warning(RegInfo.second,
"register not in ascending order in register list");
RegMap[Reg] = true;
HighRegNum = std::max(Reg, HighRegNum);
}
Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
return false;
}
/// Parse an ARM memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
///
/// TODO Only preindexing and postindexing addressing are started, unindexed
/// with option, etc are still to do.
bool ARMAsmParser::
ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
SMLoc S, E;
assert(Parser.getTok().is(AsmToken::LBrac) &&
"Token is not a Left Bracket");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
if (BaseRegTok.isNot(AsmToken::Identifier)) {
Error(BaseRegTok.getLoc(), "register expected");
return true;
}
int BaseRegNum = TryParseRegister();
if (BaseRegNum == -1) {
Error(BaseRegTok.getLoc(), "register expected");
return true;
}
bool Preindexed = false;
bool Postindexed = false;
bool OffsetIsReg = false;
bool Negative = false;
bool Writeback = false;
// First look for preindexed address forms, that is after the "[Rn" we now
// have to see if the next token is a comma.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Comma)) {
Preindexed = true;
Parser.Lex(); // Eat comma token.
int OffsetRegNum;
bool OffsetRegShifted;
enum ShiftType ShiftType;
const MCExpr *ShiftAmount = 0;
const MCExpr *Offset = 0;
if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
Offset, OffsetIsReg, OffsetRegNum, E))
return true;
const AsmToken &RBracTok = Parser.getTok();
if (RBracTok.isNot(AsmToken::RBrac)) {
Error(RBracTok.getLoc(), "']' expected");
return true;
}
E = RBracTok.getLoc();
Parser.Lex(); // Eat right bracket token.
const AsmToken &ExclaimTok = Parser.getTok();
ARMOperand *WBOp = 0;
if (ExclaimTok.is(AsmToken::Exclaim)) {
WBOp = ARMOperand::CreateToken(ExclaimTok.getString(),
ExclaimTok.getLoc());
Writeback = true;
Parser.Lex(); // Eat exclaim token
}
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
OffsetRegNum, OffsetRegShifted,
ShiftType, ShiftAmount, Preindexed,
Postindexed, Negative, Writeback,
S, E));
if (WBOp)
Operands.push_back(WBOp);
return false;
}
// The "[Rn" we have so far was not followed by a comma.
else if (Tok.is(AsmToken::RBrac)) {
// If there's anything other than the right brace, this is a post indexing
// addressing form.
E = Tok.getLoc();
Parser.Lex(); // Eat right bracket token.
int OffsetRegNum = 0;
bool OffsetRegShifted = false;
enum ShiftType ShiftType = Lsl;
const MCExpr *ShiftAmount = 0;
const MCExpr *Offset = 0;
const AsmToken &NextTok = Parser.getTok();
if (NextTok.isNot(AsmToken::EndOfStatement)) {
Postindexed = true;
Writeback = true;
if (NextTok.isNot(AsmToken::Comma)) {
Error(NextTok.getLoc(), "',' expected");
return true;
}
Parser.Lex(); // Eat comma token.
if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
E))
return true;
}
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
OffsetRegNum, OffsetRegShifted,
ShiftType, ShiftAmount, Preindexed,
Postindexed, Negative, Writeback,
S, E));
return false;
}
return true;
}
/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
/// we will parse the following (were +/- means that a plus or minus is
/// optional):
/// +/-Rm
/// +/-Rm, shift
/// #offset
/// we return false on success or an error otherwise.
bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
bool &OffsetRegShifted,
enum ShiftType &ShiftType,
const MCExpr *&ShiftAmount,
const MCExpr *&Offset,
bool &OffsetIsReg,
int &OffsetRegNum,
SMLoc &E) {
Negative = false;
OffsetRegShifted = false;
OffsetIsReg = false;
OffsetRegNum = -1;
const AsmToken &NextTok = Parser.getTok();
E = NextTok.getLoc();
if (NextTok.is(AsmToken::Plus))
Parser.Lex(); // Eat plus token.
else if (NextTok.is(AsmToken::Minus)) {
Negative = true;
Parser.Lex(); // Eat minus token
}
// See if there is a register following the "[Rn," or "[Rn]," we have so far.
const AsmToken &OffsetRegTok = Parser.getTok();
if (OffsetRegTok.is(AsmToken::Identifier)) {
SMLoc CurLoc = OffsetRegTok.getLoc();
OffsetRegNum = TryParseRegister();
if (OffsetRegNum != -1) {
OffsetIsReg = true;
E = CurLoc;
}
}
// If we parsed a register as the offset then there can be a shift after that.
if (OffsetRegNum != -1) {
// Look for a comma then a shift
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma token.
const AsmToken &Tok = Parser.getTok();
if (ParseShift(ShiftType, ShiftAmount, E))
return Error(Tok.getLoc(), "shift expected");
OffsetRegShifted = true;
}
}
else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
// Look for #offset following the "[Rn," or "[Rn],"
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
if (getParser().ParseExpression(Offset))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
}
return false;
}
/// ParseShift as one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// and returns true if it parses a shift otherwise it returns false.
bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
SMLoc &E) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return true;
StringRef ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL")
St = Lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
St = Lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
St = Asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
St = Ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
St = Rrx;
else
return true;
Parser.Lex(); // Eat shift type token.
// Rrx stands alone.
if (St == Rrx)
return false;
// Otherwise, there must be a '#' and a shift amount.
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
if (getParser().ParseExpression(ShiftAmount))
return true;
return false;
}
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands){
SMLoc S, E;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Identifier: {
if (!TryParseRegisterWithWriteBack(Operands))
return false;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = Parser.getTok().getLoc();
if (getParser().ParseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::LBrac:
return ParseMemory(Operands);
case AsmToken::LCurly:
return ParseRegisterList(Operands);
case AsmToken::Hash:
// #42 -> immediate.
// TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
S = Parser.getTok().getLoc();
Parser.Lex();
const MCExpr *ImmVal;
if (getParser().ParseExpression(ImmVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
return false;
case AsmToken::Colon: {
// ":lower16:" and ":upper16:" expression prefixes
MCSymbolRefExpr::VariantKind RefKind;
if (ParsePrefix(RefKind))
return true;
const MCExpr *ExprVal;
if (getParser().ParseExpression(ExprVal))
return true;
// TODO: Attach the prefix to the entire expression
// instead of just the first symbol.
const MCExpr *ModExprVal = ApplyPrefixToExpr(ExprVal, RefKind);
if (!ModExprVal) {
return TokError("invalid modifier '" + getTok().getIdentifier() +
"' (no symbols present)");
}
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ModExprVal, S, E));
return false;
}
}
}
// FIXME: The next 2 routines are hacks to get ARMAsmParser to understand
// :lower16: and :upper16:
// It still attaches VK_ARM_HI/LO16 to MCSymbolRefExpr, but it really
// should be attached to the entire MCExpr as a whole - perhaps using
// MCTargetExpr?
bool ARMAsmParser::ParsePrefix(MCSymbolRefExpr::VariantKind &RefKind) {
RefKind = MCSymbolRefExpr::VK_None;
// :lower16: and :upper16: modifiers
if (getLexer().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "expected :");
return true;
}
Parser.Lex(); // Eat ':'
if (getLexer().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
return true;
}
StringRef IDVal = Parser.getTok().getIdentifier();
if (IDVal == "lower16") {
RefKind = MCSymbolRefExpr::VK_ARM_LO16;
} else if (IDVal == "upper16") {
RefKind = MCSymbolRefExpr::VK_ARM_HI16;
} else {
Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
return true;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token after prefix");
return true;
}
Parser.Lex(); // Eat the last ':'
return false;
}
const MCExpr *
ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant) {
// Recurse over the given expression, rebuilding it to apply the given variant
// to the leftmost symbol.
if (Variant == MCSymbolRefExpr::VK_None)
return E;
switch (E->getKind()) {
case MCExpr::Target:
llvm_unreachable("Can't handle target expr yet");
case MCExpr::Constant:
llvm_unreachable("Can't handle lower16/upper16 of constant yet");
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
if (SRE->getKind() != MCSymbolRefExpr::VK_None)
return 0;
return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
}
case MCExpr::Unary:
llvm_unreachable("Can't handle unary expressions yet");
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant);
const MCExpr *RHS = BE->getRHS();
if (!LHS)
return 0;
return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
}
}
assert(0 && "Invalid expression kind!");
return 0;
}
/// \brief Given a mnemonic, split out possible predication code and carry
/// setting letters to form a canonical mnemonic and flags.
//
// FIXME: Would be nice to autogen this.
static StringRef SplitMnemonicAndCC(StringRef Mnemonic,
unsigned &PredicationCode,
bool &CarrySetting) {
PredicationCode = ARMCC::AL;
CarrySetting = false;
// Ignore some mnemonics we know aren't predicated forms.
//
// FIXME: Would be nice to autogen this.
if (Mnemonic == "teq" || Mnemonic == "vceq" ||
Mnemonic == "movs" ||
Mnemonic == "svc" ||
(Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
Mnemonic == "vmls" || Mnemonic == "vnmls") ||
Mnemonic == "vacge" || Mnemonic == "vcge" ||
Mnemonic == "vclt" ||
Mnemonic == "vacgt" || Mnemonic == "vcgt" ||
Mnemonic == "vcle" ||
(Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" ||
Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" ||
Mnemonic == "vqdmlal"))
return Mnemonic;
// First, split out any predication code.
unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
.Case("eq", ARMCC::EQ)
.Case("ne", ARMCC::NE)
.Case("hs", ARMCC::HS)
.Case("lo", ARMCC::LO)
.Case("mi", ARMCC::MI)
.Case("pl", ARMCC::PL)
.Case("vs", ARMCC::VS)
.Case("vc", ARMCC::VC)
.Case("hi", ARMCC::HI)
.Case("ls", ARMCC::LS)
.Case("ge", ARMCC::GE)
.Case("lt", ARMCC::LT)
.Case("gt", ARMCC::GT)
.Case("le", ARMCC::LE)
.Case("al", ARMCC::AL)
.Default(~0U);
if (CC != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
PredicationCode = CC;
}
// Next, determine if we have a carry setting bit. We explicitly ignore all
// the instructions we know end in 's'.
if (Mnemonic.endswith("s") &&
!(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" ||
Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" ||
Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" ||
Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" ||
Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
CarrySetting = true;
}
return Mnemonic;
}
/// \brief Given a canonical mnemonic, determine if the instruction ever allows
/// inclusion of carry set or predication code operands.
//
// FIXME: It would be nice to autogen this.
static void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode) {
if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" ||
Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" ||
Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") {
CanAcceptCarrySet = true;
} else {
CanAcceptCarrySet = false;
}
if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
Mnemonic == "dsb" || Mnemonic == "movs") {
CanAcceptPredicationCode = false;
} else {
CanAcceptPredicationCode = true;
}
}
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
// Split out the predication code and carry setting flag from the mnemonic.
unsigned PredicationCode;
bool CarrySetting;
Head = SplitMnemonicAndCC(Head, PredicationCode, CarrySetting);
Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
// Next, add the CCOut and ConditionCode operands, if needed.
//
// For mnemonics which can ever incorporate a carry setting bit or predication
// code, our matching model involves us always generating CCOut and
// ConditionCode operands to match the mnemonic "as written" and then we let
// the matcher deal with finding the right instruction or generating an
// appropriate error.
bool CanAcceptCarrySet, CanAcceptPredicationCode;
GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode);
// Add the carry setting operand, if necessary.
//
// FIXME: It would be awesome if we could somehow invent a location such that
// match errors on this operand would print a nice diagnostic about how the
// 's' character in the mnemonic resulted in a CCOut operand.
if (CanAcceptCarrySet) {
Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
NameLoc));
} else {
// This mnemonic can't ever accept a carry set, but the user wrote one (or
// misspelled another mnemonic).
// FIXME: Issue a nice error.
}
// Add the predication code operand, if necessary.
if (CanAcceptPredicationCode) {
Operands.push_back(ARMOperand::CreateCondCode(
ARMCC::CondCodes(PredicationCode), NameLoc));
} else {
// This mnemonic can't ever accept a predication code, but the user wrote
// one (or misspelled another mnemonic).
// FIXME: Issue a nice error.
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start, Next);
Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands)) {
Parser.EatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Operands)) {
Parser.EatToEndOfStatement();
return true;
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Parser.EatToEndOfStatement();
return TokError("unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool ARMAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out) {
MCInst Inst;
unsigned ErrorInfo;
MatchResultTy MatchResult, MatchResult2;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
if (MatchResult != Match_Success) {
// If we get a Match_InvalidOperand it might be some arithmetic instruction
// that does not update the condition codes. So try adding a CCOut operand
// with a value of reg0.
if (MatchResult == Match_InvalidOperand) {
Operands.insert(Operands.begin() + 1,
ARMOperand::CreateCCOut(0,
((ARMOperand*)Operands[0])->getStartLoc()));
MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
if (MatchResult2 == Match_Success)
MatchResult = Match_Success;
else {
ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
Operands.erase(Operands.begin() + 1);
delete CCOut;
}
}
// If we get a Match_MnemonicFail it might be some arithmetic instruction
// that updates the condition codes if it ends in 's'. So see if the
// mnemonic ends in 's' and if so try removing the 's' and adding a CCOut
// operand with a value of CPSR.
else if(MatchResult == Match_MnemonicFail) {
// Get the instruction mnemonic, which is the first token.
StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken();
if (Mnemonic.substr(Mnemonic.size()-1) == "s") {
// removed the 's' from the mnemonic for matching.
StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1);
SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc();
ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
Operands.erase(Operands.begin());
delete OldMnemonic;
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(MnemonicNoS, NameLoc));
Operands.insert(Operands.begin() + 1,
ARMOperand::CreateCCOut(ARM::CPSR, NameLoc));
MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
if (MatchResult2 == Match_Success)
MatchResult = Match_Success;
else {
ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
Operands.erase(Operands.begin());
delete OldMnemonic;
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(Mnemonic, NameLoc));
ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
Operands.erase(Operands.begin() + 1);
delete CCOut;
}
}
}
}
switch (MatchResult) {
case Match_Success:
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
}
llvm_unreachable("Implement any new match types added!");
return true;
}
/// ParseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(4, DirectiveID.getLoc());
else if (IDVal == ".thumb")
return ParseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
return ParseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
return ParseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
return ParseDirectiveSyntax(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// TODO: set thumb mode
// TODO: tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
return Error(L, "unexpected token in .thumb_func directive");
StringRef Name = Tok.getString();
Parser.Lex(); // Consume the identifier token.
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(L, "unexpected token in directive");
Parser.Lex();
// Mark symbol as a thumb symbol.
MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
getParser().getStreamer().EmitThumbFunc(Func);
return false;
}
/// ParseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(L, "unexpected token in .syntax directive");
StringRef Mode = Tok.getString();
if (Mode == "unified" || Mode == "UNIFIED")
Parser.Lex();
else if (Mode == "divided" || Mode == "DIVIDED")
Parser.Lex();
else
return Error(L, "unrecognized syntax mode in .syntax directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// ParseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = Parser.getTok().getIntVal();
if (Val == 16)
Parser.Lex();
else if (Val == 32)
Parser.Lex();
else
return Error(L, "invalid operand to .code directive");
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
Parser.Lex();
if (Val == 16)
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
else
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
return false;
}
extern "C" void LLVMInitializeARMAsmLexer();
/// Force static initialization.
extern "C" void LLVMInitializeARMAsmParser() {
RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
LLVMInitializeARMAsmLexer();
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "ARMGenAsmMatcher.inc"