Looks like the gcc in http://lab.llvm.org:8011/builders/clang-x86_64-darwin11-self-mingw32/ doesn't like "not external linkage":
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/include/llvm/Support/YAMLTraits.h: In instantiation of 'const bool llvm::yaml::has_SequenceMethodTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >::value':
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/include/llvm/Support/YAMLTraits.h:281: instantiated from 'llvm::yaml::has_SequenceTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >'
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/utils/yaml2obj/yaml2obj.cpp:627: instantiated from here
/Volumes/Macintosh_HD2/buildbots/clang-x86_64-darwin11-self-mingw32/llvm.src/include/llvm/Support/YAMLTraits.h:243: error: 'llvm::yaml::SequenceTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >::size' is not a valid template argument for type 'size_t (*)(llvm::yaml::IO&, std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> >&)' because function 'static size_t llvm::yaml::SequenceTraits<std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> > >::size(llvm::yaml::IO&, std::vector<<unnamed>::COFFYAML::Relocation, std::allocator<<unnamed>::COFFYAML::Relocation> >&)' has not external linkage
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178600 91177308-0d34-0410-b5e6-96231b3b80d8
This patch initializes t9 to the handler address, but only if the relocation
model is pic. This handles the case where handler to which eh.return jumps
points to the start of the function.
Patch by Sasa Stankovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178588 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the following two tests which have been failing on
llvm-mips-linux builder since r178403:
LLVM :: Analysis/Profiling/load-branch-weights-ifs.ll
LLVM :: Analysis/Profiling/load-branch-weights-loops.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178584 91177308-0d34-0410-b5e6-96231b3b80d8
qualifiers.
This patch only adds support for parsing these identifiers in the
X86AsmParser. The front-end interface isn't capable of looking up
these identifiers at this point in time. The end result is the
compiler now errors during object file emission, rather than at
parse time. Test case coming shortly.
Part of rdar://13499009 and PR13340
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178566 91177308-0d34-0410-b5e6-96231b3b80d8
Add utilities to create struct nodes in TBAA type DAG and to create path-aware
tags. The format of struct nodes in TBAA type DAG: a unique name, a list of
fields with field offsets and field types. The format of path-aware tags:
a base type in TBAA type DAG, an access type and an offset relative to the base
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178564 91177308-0d34-0410-b5e6-96231b3b80d8
When doing a partword atomic operation, a lwarx was being paired with
a stdcx. instead of a stwcx. when compiling for a 64-bit target. The
target has nothing to do with it in this case; we always need a stwcx.
Thanks to Kai Nacke for reporting the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178559 91177308-0d34-0410-b5e6-96231b3b80d8
The new instruction scheduling models provide information about the
number of cycles consumed on each processor resource. This makes it
possible to estimate ILP more accurately than simply counting
instructions / issue width.
The functions getResourceDepth() and getResourceLength() now identify
the limiting processor resource, and return a cycle count based on that.
This gives more precise resource information, particularly in traces
that use one resource a lot more than others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178553 91177308-0d34-0410-b5e6-96231b3b80d8
This is helps on architectures where i8,i16 are not legal but we have byte, and
short loads/stores. Allowing us to merge copies like the one below on ARM.
copy(char *a, char *b, int n) {
do {
int t0 = a[0];
int t1 = a[1];
b[0] = t0;
b[1] = t1;
radar://13536387
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178546 91177308-0d34-0410-b5e6-96231b3b80d8
The iterator could be invalidated when it's recursively deleting a whole bunch
of constant expressions in a constant initializer.
Note: This was only reproducible if `opt' was run on a `.bc' file. If `opt' was
run on a `.ll' file, it wouldn't crash. This is why the test first pushes the
`.ll' file through `llvm-as' before feeding it to `opt'.
PR15440
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178531 91177308-0d34-0410-b5e6-96231b3b80d8
SPARC v9 extends all ALU instructions to 64 bits, so we simply need to
add patterns to use them for both i32 and i64 values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178527 91177308-0d34-0410-b5e6-96231b3b80d8
The last resort pattern produces 6 instructions, and there are still
opportunities for materializing some immediates in fewer instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178526 91177308-0d34-0410-b5e6-96231b3b80d8
SPARC v9 defines new 64-bit shift instructions. The 32-bit shift right
instructions are still usable as zero and sign extensions.
This adds new F3_Sr and F3_Si instruction formats that probably should
be used for the 32-bit shifts as well. They don't really encode an
simm13 field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178525 91177308-0d34-0410-b5e6-96231b3b80d8
The 'sparc' architecture produces 32-bit code while 'sparcv9' produces
64-bit code.
It is also possible to run 32-bit code using SPARC v9 instructions with:
llc -march=sparc -mattr=+v9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178524 91177308-0d34-0410-b5e6-96231b3b80d8
This is far from complete, but it is enough to make it possible to write
test cases using i64 arguments.
Missing features:
- Floating point arguments.
- Receiving arguments on the stack.
- Calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178523 91177308-0d34-0410-b5e6-96231b3b80d8
We are going to use the same registers for 32-bit and 64-bit values, but
in two different register classes. The I64Regs register class has a
larger spill size and alignment.
The addition of an i64 register class confuses TableGen's type
inference, so it is necessary to clarify the type of some immediates and
the G0 register.
In 64-bit mode, pointers are i64 and should use the I64Regs register
class. Implement getPointerRegClass() to dynamically provide the pointer
register class depending on the subtarget. Use ptr_rc and iPTR for
memory operands.
Finally, add the i64 type to the IntRegs register class. This register
class is not used to hold i64 values, I64Regs is for that. The type is
required to appease TableGen's type checking in output patterns like this:
def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
SPARC v9 uses the same ADDrr instruction for i32 and i64 additions, and
TableGen doesn't know to check the type of register sub-classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178522 91177308-0d34-0410-b5e6-96231b3b80d8
Buffered means a later divide may be executed out-of-order while a
prior divide is sitting (buffered) in a reservation station.
You can tell it's not pipelined, because operations that use it
reserve it for more than one cycle:
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
let Latency = 25;
let ResourceCycles = [1, 10];
}
We don't currently distinguish between an unpipeline operation and one
that is split into multiple micro-ops requiring the same unit. Except
that the later may have NumMicroOps > 1 if they also consume
issue/dispatch resources.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178519 91177308-0d34-0410-b5e6-96231b3b80d8
Revision 177141 caused a regression in all but
mips64 little endian. That is because none of the
other Mips targets had test cases checking the
contents of the .eh_frame section. This patch fixes
both the llvm code and adds an assembler test case
to include the current 4 flavors.
The test cases unfortunately rely on llvm-objdump. A
preferable method would be to use a pretty printer output
such as what readelf -wf <elf_file> would give.
I also changed the name of the test case to correct a typo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178506 91177308-0d34-0410-b5e6-96231b3b80d8
We would also like to merge sequences that involve a variable index like in the
example below.
int index = *idx++
int i0 = c[index+0];
int i1 = c[index+1];
b[0] = i0;
b[1] = i1;
By extending the parsing of the base pointer to handle dags that contain a
base, index, and offset we can handle examples like the one above.
The dag for the code above will look something like:
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i8 load %index))))
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
The code that parses the tree ignores the intermediate sign extensions. However,
if there is a sign extension it needs to be on all indexes.
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (add (i8 load %index)
(i8 1))))
vs
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
radar://13536387
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178483 91177308-0d34-0410-b5e6-96231b3b80d8
The P7 and A2 have additional floating-point conversion instructions which
allow a direct two-instruction sequence (plus load/store) to convert from all
combinations (signed/unsigned i32/i64) <--> (float/double) (on previous cores,
only some combinations were directly available).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178480 91177308-0d34-0410-b5e6-96231b3b80d8
The popcntw instruction is available whenever the popcntd instruction is
available, and performs a separate popcnt on the lower and upper 32-bits.
Ignoring the high-order count, this can be used for the 32-bit input case
(saving on the explicit zero extension otherwise required to use popcntd).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178470 91177308-0d34-0410-b5e6-96231b3b80d8
PPCISD::STFIWX is really a memory opcode, and so it should come after
FIRST_TARGET_MEMORY_OPCODE, and we should use DAG.getMemIntrinsicNode to create
nodes using it.
No functionality change intended (although there could be optimization benefits
from preserving the MMO information).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178468 91177308-0d34-0410-b5e6-96231b3b80d8