This was a silly oversight, we weren't pruning allocas which were used
by variable-length memory intrinsics from the set that could be widened
and promoted as integers. Fix that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170353 91177308-0d34-0410-b5e6-96231b3b80d8
They seem to work fine.
Patch by: Christian König
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Christian König <deathsimple@vodafone.de>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170343 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by: Christian König
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Christian König <deathsimple@vodafone.de>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170342 91177308-0d34-0410-b5e6-96231b3b80d8
The Align parameter is a power of two, so 16 results in 64K
alignment. Additional to that even 16 byte alignment doesn't
make any sense, so just remove it.
Patch by: Christian König
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Christian König <deathsimple@vodafone.de>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170341 91177308-0d34-0410-b5e6-96231b3b80d8
This also cleans up a bit of the memcpy call rewriting by sinking some
irrelevant code further down and making the call-emitting code a bit
more concrete.
Previously, memcpy of a subvector would actually miscompile (!!!) the
copy into a single vector element copy. I have no idea how this ever
worked. =/ This is the memcpy half of PR14478 which we probably weren't
noticing previously because it didn't actually assert.
The rewrite relies on the newly refactored insert- and extractVector
functions to do the heavy lifting, and those are the same as used for
loads and stores which makes the test coverage a bit more meaningful
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170338 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLowering::getRegClassFor).
Some isSimple() guards were missing, or getSimpleVT() were hoisted too
far, resulting in asserts on valid LLVM assembly input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170336 91177308-0d34-0410-b5e6-96231b3b80d8
Check whether a BB is known as reachable before adding it to the worklist.
This way BB's with multiple predecessors are added to the list no more than
once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170335 91177308-0d34-0410-b5e6-96231b3b80d8
The first half of fixing this bug was actually in r170328, but was
entirely coincidental. It did however get me to realize the nature of
the bug, and adapt the test case to test more interesting behavior. In
turn, that uncovered the rest of the bug which I've fixed here.
This should fix two new asserts that showed up in the vectorize nightly
tester.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170333 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed this while looking at r170328. We only ever do a vector
rewrite when the alloca *is* the vector type, so it's good to not paper
over bugs here by doing a convertValue that isn't needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170331 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow its use inside of memcpy rewriting as well. This routine
is more complex than extractVector, and some of its uses are not 100%
where I want them to be so there is still some work to do here.
While this can technically change the output in some cases, it shouldn't
be a change that matters -- IE, it can leave some dead code lying around
that prior versions did not, etc.
Yet another step in the refactorings leading up to the solution to the
last component of PR14478.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170328 91177308-0d34-0410-b5e6-96231b3b80d8
The method helpers all implicitly act upon the alloca, and what we
really want is a fully generic helper. Doing memcpy rewrites is more
special than all other rewrites because we are at times rewriting
instructions which touch pointers *other* than the alloca. As
a consequence all of the helpers needed by memcpy rewriting of
sub-vector copies will need to be generalized fully.
Note that all of these helpers ({insert,extract}{Integer,Vector}) are
woefully uncommented. I'm going to go back through and document them
once I get the factoring correct.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170325 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it suitable for use in rewriting memcpy in the presence of
subvector memcpy intrinsics.
No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170324 91177308-0d34-0410-b5e6-96231b3b80d8
PR14478 highlights a serious problem in SROA that simply wasn't being
exercised due to a lack of vector input code mixed with C-library
function calls. Part of SROA was written carefully to handle subvector
accesses via memset and memcpy, but the rewriter never grew support for
this. Fixing it required refactoring the subvector access code in other
parts of SROA so it could be shared, and then fixing the splat formation
logic and using subvector insertion (this patch).
The PR isn't quite fixed yet, as memcpy is still broken in the same way.
I'm starting on that series of patches now.
Hopefully this will be enough to bring the bullet benchmark back to life
with the bb-vectorizer enabled, but that may require fixing memcpy as
well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170301 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality changed. Refactoring leading up to the fix for PR14478
which requires some significant changes to the memset and memcpy
rewriting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170299 91177308-0d34-0410-b5e6-96231b3b80d8
Currently there is no instruction encoding info and
XCoreDisassembler::getInstruction() always returns Fail. I intend to add
instruction encodings and tests in follow on commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170292 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds XCoreMCInstLower to do the lowering to MCInst and
XCoreInstPrinter to print the MCInsts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170288 91177308-0d34-0410-b5e6-96231b3b80d8
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170279 91177308-0d34-0410-b5e6-96231b3b80d8
We match the pattern "x >= y ? x-y : 0" into "subus x, y" and two special cases
if y is a constant. DAGCombiner canonicalizes those so we first have to undo the
canonicalization for those cases. The pattern occurs in gzip when the loop
vectorizer is enabled. Part of PR14613.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170273 91177308-0d34-0410-b5e6-96231b3b80d8