This was breaking sqlite with the machine verifier because operand 0 was a def according to tablegen, but didn't have the 'isDef' flag set.
Looking at the ISA, its clear that this operand is a source as writing to st(0) is implicit. So move the operand to the correct place in the td file.
rdar://problem/20751584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236183 91177308-0d34-0410-b5e6-96231b3b80d8
Stop using ST registers for function returns and inline-asm instructions and use
FP registers instead. This allows removing a large amount of code in the
stackifier pass that was needed to track register liveness and handle copies
between ST and FP registers and function calls returning floating point values.
It also fixes a bug which manifests when an ST register defined by an
inline-asm instruction was live across another inline-asm instruction, as shown
in the following sequence of machine instructions:
1. INLINEASM <es:frndint> $0:[regdef], %ST0<imp-def,tied5>
2. INLINEASM <es:fldcw $0>
3. %FP0<def> = COPY %ST0
<rdar://problem/16952634>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214580 91177308-0d34-0410-b5e6-96231b3b80d8
* Model FPSW (the FPU status word) as a register.
* Add ISel patterns for the FUCOM*, FNSTSW and SAHF instructions.
* During Legalize/Lowering, build a node sequence to transfer the comparison
result from FPSW into EFLAGS. If you're wondering about the right-shift: That's
an implicit sub-register extraction (%ax -> %ah) which is handled later on by
the instruction selector.
Fixes PR6679. Patch by Christoph Erhardt!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155704 91177308-0d34-0410-b5e6-96231b3b80d8
Drop the FpMov instructions, use plain COPY instead.
Drop the FpSET/GET instruction for accessing fixed stack positions.
Instead use normal COPY to/from ST registers around inline assembly, and
provide a single new FpPOP_RETVAL instruction that can access the return
value(s) from a call. This is still necessary since you cannot tell from
the CALL instruction alone if it returns anything on the FP stack. Teach
fast isel to use this.
This provides a much more robust way of handling fixed stack registers -
we can tolerate arbitrary FP stack instructions inserted around calls
and inline assembly. Live range splitting could sometimes break x87 code
by inserting spill code in unfortunate places.
As a bonus we handle floating point inline assembly correctly now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134018 91177308-0d34-0410-b5e6-96231b3b80d8
These are just FXSAVE and FXRSTOR with REX.W prefixes. These versions use
64-bit pointer values instead of 32-bit pointer values in the memory map they
dump and restore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125446 91177308-0d34-0410-b5e6-96231b3b80d8
exposed:
GAS doesn't accept "fcomip %st(1)", it requires "fcomip %st(1), %st(0)"
even though st(0) is implicit in all other fp stack instructions.
Fortunately, there is an alias for fcomip named "fcompi" and gas does
accept the default argument for the alias (boggle!).
As such, switch the canonical form of this instruction to "pi" instead
of "ip". This makes the code generator and disassembler generate pi,
avoiding the gas bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118356 91177308-0d34-0410-b5e6-96231b3b80d8
It doesn't look like anything is wrong with the checkin,
but the new test cases expose a mem bug in AsmParser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117087 91177308-0d34-0410-b5e6-96231b3b80d8
sense, when the instruction takes the 16-bit ax register or m16 memory
location. These changes to llvm-mc matches what the darwin assembler allows
for these instructions. Also added the missing flex (without the wait prefix)
and ud2a as an alias to ud2 (still to add ud2b).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117031 91177308-0d34-0410-b5e6-96231b3b80d8
pass that inserted it.
It is no longer necessary to limit the live ranges of FP registers to a single
basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108536 91177308-0d34-0410-b5e6-96231b3b80d8
instructions as the Mac OS X darwin assembler. Some of which like 'fcoml'
assembled to different opcodes. While some of the suffixes were just different.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102958 91177308-0d34-0410-b5e6-96231b3b80d8
to input patterns, we can fix X86ISD::CMP and X86ISD::BT as taking
two inputs (which have to be the same type) and *returning an i32*.
This is how the SDNodes get made in the graph, but we weren't able
to model it this way due to deficiencies in the pattern language.
Now we can change things like this:
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
- [(X86cmp RFP80:$lhs, RFP80:$rhs),
- (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
+ [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
and fix terrible crimes like this:
-def : Pat<(parallel (X86cmp GR8:$src1, 0), (implicit EFLAGS)),
+def : Pat<(X86cmp GR8:$src1, 0),
(TEST8rr GR8:$src1, GR8:$src1)>;
This relies on matching the result of TEST8rr (which is EFLAGS, which is
an implicit def) to the result of X86cmp, an i32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98903 91177308-0d34-0410-b5e6-96231b3b80d8
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85517 91177308-0d34-0410-b5e6-96231b3b80d8
All of these do not have patterns (they're for the
disassembler).
Many of the floating-point instructions will probably
be rolled into definitions that have patterns, and may
eventually be superseded by mdefs. So I put them
together and left a comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81979 91177308-0d34-0410-b5e6-96231b3b80d8