The test case feeds the following into InstCombine's visitSelect:
%tobool8 = icmp ne i32 0, 0
%phitmp = select i1 %tobool8, i32 3, i32 0
Then instcombine replaces the right side of the switch with 0, doesn't notice
that nothing changes and tries again indefinitely.
This fixes PR12897.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157587 91177308-0d34-0410-b5e6-96231b3b80d8
add an additional parameter to InstCombiner::EmitGEPOffset() to force it to *not* emit operations with NUW flag
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156585 91177308-0d34-0410-b5e6-96231b3b80d8
refactor code a bit to enable future changes to support run-time information
add support to compute allocation sizes at run-time if penalty > 1 (e.g., malloc(x), calloc(x, y), and VLAs)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156515 91177308-0d34-0410-b5e6-96231b3b80d8
<rdar://problem/11291436>.
This is a second attempt at a fix for this, the first was r155468. Thanks
to Chandler, Bob and others for the feedback that helped me improve this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155866 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155362 91177308-0d34-0410-b5e6-96231b3b80d8
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155181 91177308-0d34-0410-b5e6-96231b3b80d8
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155136 91177308-0d34-0410-b5e6-96231b3b80d8
GEPs, bit casts, and stores reaching it but no other instructions. These
often show up during the iterative processing of the inliner, SROA, and
DCE. Once we hit this point, we can completely remove the alloca. These
were actually showing up in the final, fully optimized code in a bunch
of inliner tests I've been working on, and notably they show up after
LLVM finishes optimizing away all function calls involved in
hash_combine(a, b).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154285 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
overflow checking multiply intrinsic as well.
Add a test for this, updating the test from grep to FileCheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153028 91177308-0d34-0410-b5e6-96231b3b80d8
alignment. If that's the case, then we want to make sure that we don't increase
the alignment of the store instruction. Because if we increase it to be "more
aligned" than the pointer, code-gen may use instructions which require a greater
alignment than the pointer guarantees.
<rdar://problem/11043589>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152907 91177308-0d34-0410-b5e6-96231b3b80d8
The 'CmpInst::isFalseWhenEqual' function returns 'false' for values other than
simply equality. For instance, it returns 'false' for <= or >=. This isn't the
correct behavior for this transformation, which is checking for strict equality
and non-equality. It was causing the gcc.c-torture/execute/frame-address.c test
to fail because it would completely (and incorrectly) optimize a whole function
into a 'ret i32 0'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152497 91177308-0d34-0410-b5e6-96231b3b80d8
by using llvm::isIdentifiedObject. Also teach it to handle GEPs that have
the same base pointer and constant operands. Fixes PR11238!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151449 91177308-0d34-0410-b5e6-96231b3b80d8
This transformation is not safe in some pathological cases (signed icmp of pointers should be an
extremely rare thing, but it's valid IR!). Add an explanatory comment.
Kudos to Duncan for pointing out this edge case (and not giving up explaining it until I finally got it).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151055 91177308-0d34-0410-b5e6-96231b3b80d8
- Ignore pointer casts.
- Also expand GEPs that aren't constantexprs when they have one use or only constant indices.
- We now compile "&foo[i] - &foo[j]" into "i - j".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150961 91177308-0d34-0410-b5e6-96231b3b80d8
Changing arguments from being passed as fixed to varargs is unsafe, as
the ABI may require they be handled differently (stack vs. register, for
example).
Remove two tests which rely on the bitcast being folded into the direct
call, which is exactly the transformation that's unsafe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149457 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately I also had to disable constant-pool-sharing.ll the code it tests has been
updated to use the IL logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149148 91177308-0d34-0410-b5e6-96231b3b80d8
We still save an instruction when just the "and" part is replaced.
Also change the code to match comments more closely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147753 91177308-0d34-0410-b5e6-96231b3b80d8
This was intended to undo the sub canonicalization in cases where it's not profitable, but it also
finds some cases on it's own.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147256 91177308-0d34-0410-b5e6-96231b3b80d8
unsigned foo(unsigned x) { return 31 - __builtin_clz(x); }
now compiles into a single "bsrl" instruction on x86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147255 91177308-0d34-0410-b5e6-96231b3b80d8
This has the obvious advantage of being commutable and is always a win on x86 because
const - x wastes a register there. On less weird architectures this may lead to
a regression because other arithmetic doesn't fuse with it anymore. I'll address that
problem in a followup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147254 91177308-0d34-0410-b5e6-96231b3b80d8
I followed three heuristics for deciding whether to set 'true' or
'false':
- Everything target independent got 'true' as that is the expected
common output of the GCC builtins.
- If the target arch only has one way of implementing this operation,
set the flag in the way that exercises the most of codegen. For most
architectures this is also the likely path from a GCC builtin, with
'true' being set. It will (eventually) require lowering away that
difference, and then lowering to the architecture's operation.
- Otherwise, set the flag differently dependending on which target
operation should be tested.
Let me know if anyone has any issue with this pattern or would like
specific tests of another form. This should allow the x86 codegen to
just iteratively improve as I teach the backend how to differentiate
between the two forms, and everything else should remain exactly the
same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146370 91177308-0d34-0410-b5e6-96231b3b80d8
weak variable are compiled by different compilers, such as GCC and LLVM, while
LLVM may increase the alignment to the preferred alignment there is no reason to
think that GCC will use anything more than the ABI alignment. Since it is the
GCC version that might end up in the final program (as the linkage is weak), it
is wrong to increase the alignment of loads from the global up to the preferred
alignment as the alignment might only be the ABI alignment.
Increasing alignment up to the ABI alignment might be OK, but I'm not totally
convinced that it is. It seems better to just leave the alignment of weak
globals alone.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145413 91177308-0d34-0410-b5e6-96231b3b80d8
trampoline forms. Both of these were correct in LLVM 3.0, and we don't
need to support LLVM 2.9 and earlier in mainline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145174 91177308-0d34-0410-b5e6-96231b3b80d8
combining of the landingpad instruction. The ObjC personality function acts
almost identically to the C++ personality function. In particular, it uses
"null" as a "catch-all" value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142256 91177308-0d34-0410-b5e6-96231b3b80d8
profile metadata at the same time. Use it to preserve metadata attached
to a branch when re-writing it in InstCombine.
Add metadata to the canonicalize_branch InstCombine test, and check that
it is tranformed correctly.
Reviewed by Nick Lewycky!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142168 91177308-0d34-0410-b5e6-96231b3b80d8
When updating the worklist for InstCombine, the Add/AddUsersToWorklist
functions may access the instruction(s) being added, for debug output for
example. If the instructions aren't yet added to the basic block, this
can result in a crash. Finish the instruction transformation before
adjusting the worklist instead.
rdar://10238555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141203 91177308-0d34-0410-b5e6-96231b3b80d8
catch or repeated filter clauses. Teach instcombine a bunch
of tricks for simplifying landingpad clauses. Currently the
code only recognizes the GNU C++ and Ada personality functions,
but that doesn't stop it doing a bunch of "generic" transforms
which are hopefully fine for any real-world personality function.
If these "generic" transforms turn out not to be generic, they
can always be conditioned on the personality function. Probably
someone should add the ObjC++ personality function. I didn't as
I don't know anything about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140852 91177308-0d34-0410-b5e6-96231b3b80d8
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize chained bitcasts of the form A->B->A.
Undo r138722 and change isEliminableCastPair to allow this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138756 91177308-0d34-0410-b5e6-96231b3b80d8
of the instruction.
Note that this change affects the existing non-atomic load and store
instructions; the parser now accepts both forms, and the change is noted
in the release notes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137527 91177308-0d34-0410-b5e6-96231b3b80d8
Don't replace a gep/bitcast with 'undef' because that will form a "free(undef)"
which in turn means "unreachable". What we wanted was a no-op. Instead, analyze
the whole tree and look for all the instructions we need to delete first, then
delete them second, not relying on the use_list to stay consistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136752 91177308-0d34-0410-b5e6-96231b3b80d8
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134829 91177308-0d34-0410-b5e6-96231b3b80d8
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8
might overflow. Re-typing the alloca to a larger type (e.g. double)
hoists a shift into the alloca, potentially exposing overflow in the
expression. rdar://problem/9265821
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132926 91177308-0d34-0410-b5e6-96231b3b80d8
crc32.[8|16|32] have been renamed to .crc32.32.[8|16|32] and
crc64.[8|16|32] have been renamed to .crc32.64.[8|64].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132163 91177308-0d34-0410-b5e6-96231b3b80d8
It's better to do this in codegen, mul.with.overflow(X, 2) is more canonical because it has only one use on "X".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131798 91177308-0d34-0410-b5e6-96231b3b80d8
As an example, the change to InstCombineCalls catches a common case where a call to a bitcast of a function is rewritten.
Chris, does this approach look reasonable?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131516 91177308-0d34-0410-b5e6-96231b3b80d8
This obviously helps a lot if the division would be turned into a libcall
(think i64 udiv on i386), but div is also one of the few remaining instructions
on modern CPUs that become more expensive when the bitwidth gets bigger.
This also helps register pressure on i386 when dividing chars, divb needs
two 8-bit parts of a 16 bit register as input where divl uses two registers.
int foo(unsigned char a) { return a/10; }
int bar(unsigned char a, unsigned char b) { return a/b; }
compiles into (x86_64)
_foo:
imull $205, %edi, %eax
shrl $11, %eax
ret
_bar:
movzbl %dil, %eax
divb %sil, %al
movzbl %al, %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130615 91177308-0d34-0410-b5e6-96231b3b80d8
when X has multiple uses. This is useful for exposing secondary optimizations,
but the X86 backend isn't ready for this when X has a single use. For example,
this can disable load folding.
This is inching towards resolving PR6627.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130238 91177308-0d34-0410-b5e6-96231b3b80d8
canonical, and generally leads to better code. Found while looking at
an article about saturating arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129545 91177308-0d34-0410-b5e6-96231b3b80d8
space info. We crash with an assert in this case. This change checks that the
address space of the bitcasted pointer is the same as the gep ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128884 91177308-0d34-0410-b5e6-96231b3b80d8
Some platforms may treat denormals as zero, on other platforms multiplication
with a subnormal is slower than dividing by a normal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128555 91177308-0d34-0410-b5e6-96231b3b80d8
removes one use of X which helps it pass the many hasOneUse() checks.
In my analysis, this turns up very often where X = A >>exact B and that can't be
simplified unless X has one use (except by increasing the lifetime of A which is
generally a performance loss).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128373 91177308-0d34-0410-b5e6-96231b3b80d8
This happens a lot in clang-compiled C++ code because it adds overflow checks to operator new[]:
unsigned *foo(unsigned n) { return new unsigned[n]; }
We can optimize away the overflow check on 64 bit targets because (uint64_t)n*4 cannot overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127418 91177308-0d34-0410-b5e6-96231b3b80d8
the value splatted into every element. Extend this to getTrue and getFalse which
by providing new overloads that take Types that are either i1 or <N x i1>. Use
it in InstCombine to add vector support to some code, fixing PR8469!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127116 91177308-0d34-0410-b5e6-96231b3b80d8
possible. This goes into instcombine and instsimplify because instsimplify
doesn't need to check hasOneUse since it returns (almost exclusively) constants.
This fixes PR9343 #4#5 and #8!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127064 91177308-0d34-0410-b5e6-96231b3b80d8
intersection of the LHS and RHS ConstantRanges and return "false" when
the range is empty.
This simplifies some code and catches some extra cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126744 91177308-0d34-0410-b5e6-96231b3b80d8
function prototype into a call to a varargs prototype. We do
allow the xform if we have a definition, but otherwise we don't
want to risk that we're changing the abi in a subtle way. On
X86-64, for example, varargs require passing stuff in %al.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126363 91177308-0d34-0410-b5e6-96231b3b80d8
We usually catch this kind of optimization through InstSimplify's distributive
magic, but or doesn't distribute over xor in general.
"A | ~(A | B) -> A | ~B" hits 24 times on gcc.c.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126081 91177308-0d34-0410-b5e6-96231b3b80d8