builds.
--- Reverse-merging (from foreign repository) r68552 into '.':
U test/CodeGen/X86/tls8.ll
U test/CodeGen/X86/tls10.ll
U test/CodeGen/X86/tls2.ll
U test/CodeGen/X86/tls6.ll
U lib/Target/X86/X86Instr64bit.td
U lib/Target/X86/X86InstrSSE.td
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86RegisterInfo.cpp
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86CodeEmitter.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86InstrInfo.h
U lib/Target/X86/X86ISelDAGToDAG.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h
U lib/Target/X86/X86ISelLowering.h
U lib/Target/X86/X86InstrInfo.cpp
U lib/Target/X86/X86InstrBuilder.h
U lib/Target/X86/X86RegisterInfo.td
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68560 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a small regression on the generated code
quality in the case we are just computing addresses, not
loading values.
Will work on it and on X86-64 support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68552 91177308-0d34-0410-b5e6-96231b3b80d8
operand is a signed 32-bit immediate. Unlike with the 8-bit
signed immediate case, it isn't actually smaller to fold a
32-bit signed immediate instead of a load. In fact, it's
larger in the case of 32-bit unsigned immediates, because
they can be materialized with movl instead of movq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67001 91177308-0d34-0410-b5e6-96231b3b80d8
operands can't both be fully folded at the same time. For example,
in the included testcase, a global variable is being added with
an add of two values. The global variable wants RIP-relative
addressing, so it can't share the address with another base
register, but it's still possible to fold the initial add.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66865 91177308-0d34-0410-b5e6-96231b3b80d8
we want to clear %ah to zero before a division, just use a
zero-extending mov to %al. This fixes PR3366.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62691 91177308-0d34-0410-b5e6-96231b3b80d8
and into the ScheduleDAGInstrs class, so that they don't get
destructed and re-constructed for each block. This fixes a
compile-time hot spot in the post-pass scheduler.
To help facilitate this, tidy and do some minor reorganization
in the scheduler constructor functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62275 91177308-0d34-0410-b5e6-96231b3b80d8
special-purpose hook to a new pass. Also, add check to see if any
x87 virtual registers are used, to avoid doing any work in the
common case that no x87 code is needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59190 91177308-0d34-0410-b5e6-96231b3b80d8
to be sign-extended when it is promoted to 64 bits for intermediate
offset calculations. The offset calculations are done as uint64_t so that
overflow conditions are well defined.
This fixes a problem which is currently hidden by the x86 AsmPrinter but
which was exposed by r58917 (which is temporarily reverted). See PR3027
for details.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59044 91177308-0d34-0410-b5e6-96231b3b80d8
priority function. Instead, just iterate over the AllNodes list, which is
already in topological order. This eliminates a fair amount of bookkeeping,
and speeds up the isel phase by about 15% on many testcases.
The impact on most targets is that AddToISelQueue calls can be simply removed.
In the x86 target, there are two additional notable changes.
The rule-bending AND+SHIFT optimization in MatchAddress that creates new
pre-isel nodes during isel is now a little more verbose, but more robust.
Instead of either creating an invalid DAG or creating an invalid topological
sort, as it has historically done, it can now just insert the new nodes into
the node list at a position where they will be consistent with the topological
ordering.
Also, the address-matching code has logic that checked to see if a node was
"already selected". However, when a node is selected, it has all its uses
taken away via ReplaceAllUsesWith or equivalent, so it won't recieve any
further visits from MatchAddress. This code is now removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58748 91177308-0d34-0410-b5e6-96231b3b80d8
have its node id set. The new and and shift nodes are the nodes that need
the IDs. This fixes PR2982.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58655 91177308-0d34-0410-b5e6-96231b3b80d8
flag. Then in a debugger developers can set breakpoints at these calls
to see waht is about to be selected and what the resulting subgraph
looks like. This really helps when debugging instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58278 91177308-0d34-0410-b5e6-96231b3b80d8
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57748 91177308-0d34-0410-b5e6-96231b3b80d8
create a new DAG node to represent the new shift to keep the
DAG consistent, even though it'll almost always be folded into
the address.
If a user of the resulting address has multiple uses, the
nodes may get revisited by a later MatchAddress call, in which
case DAG inconsistencies do matter.
This fixes PR2849.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57465 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, just create one, and make sure everything that needs
it can access it. Previously most of the SelectionDAGISel
subclasses all had their own TargetLowering object, which was
redundant with the TargetLowering object in the TargetMachine
subclasses, except on Sparc, where SparcTargetMachine
didn't have a TargetLowering object. Change Sparc to work
more like the other targets here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57016 91177308-0d34-0410-b5e6-96231b3b80d8
Completely eliminate the TopOrder std::vector. Instead, sort
the AllNodes list in place. This also eliminates the need to
call AllNodes.size(), a linear-time operation, before
performing the sort.
Also, eliminate the Sources temporary std::vector, since it
essentially duplicates the sorted result as it is being
built.
This also changes the direction of the topological sort
from bottom-up to top-down. The AllNodes list starts out in
roughly top-down order, so this reduces the amount of
reordering needed. Top-down is also more convenient for
Legalize, and ISel needed only minor adjustments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56867 91177308-0d34-0410-b5e6-96231b3b80d8