Testing: passed 'make check' including LIT tests for all sequences being handled (both SSE and AVX)
Reviewers: Evan Cheng, David Blaikie, Bruno Lopes, Elena Demikhovsky, Chad Rosier, Anton Korobeynikov
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147601 91177308-0d34-0410-b5e6-96231b3b80d8
X86ISelLowering C++ code. Because this is lowered via an xor wrapped
around a bsr, we want the dagcombine which runs after isel lowering to
have a chance to clean things up. In particular, it is very common to
see code which looks like:
(sizeof(x)*8 - 1) ^ __builtin_clz(x)
Which is trying to compute the most significant bit of 'x'. That's
actually the value computed directly by the 'bsr' instruction, but if we
match it too late, we'll get completely redundant xor instructions.
The more naive code for the above (subtracting rather than using an xor)
still isn't handled correctly due to the dagcombine getting confused.
Also, while here fix an issue spotted by inspection: we should have been
expanding the zero-undef variants to the normal variants when there is
an 'lzcnt' instruction. Do so, and test for this. We don't want to
generate unnecessary 'bsr' instructions.
These two changes fix some regressions in encoding and decoding
benchmarks. However, there is still a *lot* to be improve on in this
type of code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147244 91177308-0d34-0410-b5e6-96231b3b80d8
floating point add/sub of appropriate shuffle vectors. Does not
synthesize the 256 bit AVX versions because they work differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140332 91177308-0d34-0410-b5e6-96231b3b80d8
Undo the changes from r139285 which added custom lowering to vselect.
Add tablegen lowering for vselect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139479 91177308-0d34-0410-b5e6-96231b3b80d8
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139159 91177308-0d34-0410-b5e6-96231b3b80d8
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
code is inserted to first check if the current stacklet has enough
space. If so, space is allocated by simply decrementing the stack
pointer. Otherwise a runtime routine (__morestack_allocate_stack_space
in libgcc) is called which allocates the required memory from the
heap.
Patch by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138818 91177308-0d34-0410-b5e6-96231b3b80d8
from DYNAMIC_STACKALLOC.
Two new pseudo instructions (SEG_ALLOCA_32 and SEG_ALLOCA_64) which
will match X86SegAlloca (based on word size) are also added. They
will be custom emitted to inject the actual stack handling code.
Patch by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138814 91177308-0d34-0410-b5e6-96231b3b80d8
match splats in the form (splat (scalar_to_vector (load ...))) whenever
the load can be folded. All the logic and instruction emission is
working but because of PR8156, there are no ways to match loads, cause
they can never be folded for splats. Thus, the tests are XFAILed, but
I've tested and exercised all the logic using a relaxed version for
checking the foldable loads, as if the bug was already fixed. This
should work out of the box once PR8156 gets fixed since MayFoldLoad will
work as expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137810 91177308-0d34-0410-b5e6-96231b3b80d8
vectors. It operates on 128-bit elements instead of regular scalar
types. Recognize shuffles that are suitable for VPERM2F128 and teach
the x86 legalizer how to handle them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137519 91177308-0d34-0410-b5e6-96231b3b80d8
Also make PALIGNR masks to don't match 256-bits, which isn't supported
It's also a step to solve PR10489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136448 91177308-0d34-0410-b5e6-96231b3b80d8
usage of the shuffle bitmask. Both work in 128-bit lanes without
crossing, but in the former the mask of the high part is the same
used by the low part while in the later both lanes have independent
masks. Handle this properly and and add support for vpermilpd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136200 91177308-0d34-0410-b5e6-96231b3b80d8
different from the previous 128-bit because they work in lanes.
Update a few comments and add testcases
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136157 91177308-0d34-0410-b5e6-96231b3b80d8
and was actually very wrong, fix it and make it simpler. Also remove the
ConcatVectors function, which is unused now.
- Fix a introduction of useless nodes in r126664 and r126264. The
VUNPCKL* should never be introduced cause we don't want duplicate
nodes for 128 AVX and non-AVX modes, the actual instruction
difference only exists during isel, but not for target specific DAG
nodes. We only introduce V* target nodes when there is no 128-bit
version already there.
- Fix a fragile test and make it more useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135729 91177308-0d34-0410-b5e6-96231b3b80d8
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:
Instead of:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vextractf128 $1, %ymm0, %xmm1
shufps $1, %xmm1, %xmm1
movss %xmm1, 28(%rsp)
movss %xmm1, 24(%rsp)
movss %xmm1, 20(%rsp)
movss %xmm1, 16(%rsp)
vextractf128 $0, %ymm0, %xmm0
shufps $1, %xmm0, %xmm0
movss %xmm0, 12(%rsp)
movss %xmm0, 8(%rsp)
movss %xmm0, 4(%rsp)
movss %xmm0, (%rsp)
vmovaps (%rsp), %ymm0
We get:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vpermilps $85, %ymm0, %ymm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135662 91177308-0d34-0410-b5e6-96231b3b80d8