but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149800 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG has 4 different ways of passing physreg defs to users.
Collect all of the uses at the same time, and pass all of them to
MI->setPhysRegsDeadExcept() to mark the remaining defs dead.
The setPhysRegsDeadExcept() function will soon add the required
implicit-defs to instructions with register mask operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149708 91177308-0d34-0410-b5e6-96231b3b80d8
In this patch we optimize this pattern and convert the sequence into extract op of a narrow type.
This allows the BUILD_VECTOR dag optimizations to construct efficient shuffle operations in many cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149692 91177308-0d34-0410-b5e6-96231b3b80d8
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling.
Patch by Sergei Larin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149547 91177308-0d34-0410-b5e6-96231b3b80d8
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149481 91177308-0d34-0410-b5e6-96231b3b80d8
more robust) ways to do what it was doing now. Also, add static methods
for decoding a ShuffleVector mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149028 91177308-0d34-0410-b5e6-96231b3b80d8
This SelectionDAG node will be attached to call nodes by LowerCall(),
and eventually becomes a MO_RegisterMask MachineOperand on the
MachineInstr representing the call instruction.
LowerCall() will attach a register mask that depends on the calling
convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148436 91177308-0d34-0410-b5e6-96231b3b80d8
We know that the blend instructions only use the MSB, so if the mask is
sign-extended then we can convert it into a SHL instruction. This is a
common pattern because the type-legalizer sign-extends the i1 type which
is used by the LLVM-IR for the condition.
Added a new optimization in SimplifyDemandedBits for SIGN_EXTEND_INREG -> SHL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148225 91177308-0d34-0410-b5e6-96231b3b80d8
overly conservative. It was concerned about cases where it would prohibit
folding simple [r, c] addressing modes. e.g.
ldr r0, [r2]
ldr r1, [r2, #4]
=>
ldr r0, [r2], #4
ldr r1, [r2]
Change the logic to look for such cases which allows it to form indexed memory
ops more aggressively.
rdar://10674430
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148086 91177308-0d34-0410-b5e6-96231b3b80d8
When we load the v12i32 type, the GenWidenVectorLoads method generates two loads: v8i32 and v4i32
and attempts to use CONCAT_VECTORS to join them. In this fix I concat undef values to widen
the smaller value. The test "widen_load-2.ll" also exposes this bug on AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147964 91177308-0d34-0410-b5e6-96231b3b80d8
detect a pattern which can be implemented with a small 'shl' embedded in
the addressing mode scale. This happens in real code as follows:
unsigned x = my_accelerator_table[input >> 11];
Here we have some lookup table that we look into using the high bits of
'input'. Each entity in the table is 4-bytes, which means this
implicitly gets turned into (once lowered out of a GEP):
*(unsigned*)((char*)my_accelerator_table + ((input >> 11) << 2));
The shift right followed by a shift left is canonicalized to a smaller
shift right and masking off the low bits. That hides the shift right
which x86 has an addressing mode designed to support. We now detect
masks of this form, and produce the longer shift right followed by the
proper addressing mode. In addition to saving a (rather large)
instruction, this also reduces stalls in Intel chips on benchmarks I've
measured.
In order for all of this to work, one part of the DAG needs to be
canonicalized *still further* than it currently is. This involves
removing pointless 'trunc' nodes between a zextload and a zext. Without
that, we end up generating spurious masks and hiding the pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147936 91177308-0d34-0410-b5e6-96231b3b80d8
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147861 91177308-0d34-0410-b5e6-96231b3b80d8
a combined-away node and the result of the combine isn't substantially
smaller than the input, it's just canonicalized. This is the first part
of a significant (7%) performance gain for Snappy's hot decompression
loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147604 91177308-0d34-0410-b5e6-96231b3b80d8
Before we'd get:
$ clang t.c
fatal error: error in backend: Invalid operand for inline asm constraint 'i'!
Now we get:
$ clang t.c
t.c:16:5: error: invalid operand for inline asm constraint 'i'!
"movq (%4), %%mm0\n"
^
Which at least gets us the inline asm that is the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147502 91177308-0d34-0410-b5e6-96231b3b80d8