This was an experimental option, but needs to be defined
per-target. e.g. PPC A2 needs to aggressively hide latency.
I converted some in-order scheduling tests to A2. Hal is working on
more test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171946 91177308-0d34-0410-b5e6-96231b3b80d8
value in the 64 bit .eh_frame section.
It doesn't however allow exception handling to work
yet since it depends on the correct relocation model
being set in the ELF header flags.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171881 91177308-0d34-0410-b5e6-96231b3b80d8
The current Intel Atom microarchitecture has a feature whereby
when a function returns early then it is slightly faster to execute
a sequence of NOP instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction until
the return address is ready.
When compiling for X86 Atom only, this patch will run a pass,
called "X86PadShortFunction" which will add NOP instructions where less
than four cycles elapse between function entry and return.
It includes tests.
This patch has been updated to address Nadav's review comments
- Optimize only at >= O1 and don't do optimization if -Os is set
- Stores MachineBasicBlock* instead of BBNum
- Uses DenseMap instead of std::map
- Fixes placement of braces
Patch by Andy Zhang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171879 91177308-0d34-0410-b5e6-96231b3b80d8
code generation. Variables addressed through a GlobalAlias were not being
handled, and variables with available_externally linkage were treated
incorrectly. The patch contains two new tests to verify the correct code
generation for these cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171778 91177308-0d34-0410-b5e6-96231b3b80d8
This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171765 91177308-0d34-0410-b5e6-96231b3b80d8
Absent a Contributor's License Agreement (CLA) with an LLVM legal entity and as
reviewed and agreed with Chris Lattner, add a patent license covering future
contributions from ARM until there is a CLA. This is to make explicit ARM's
grant of patent rights to recipients of LLVM containing ARM-contributed
material.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171721 91177308-0d34-0410-b5e6-96231b3b80d8
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
cvtsi2* should parse with an 'l' or 'q' suffix or no suffix at all. No suffix should be treated the same as 'l' suffix. Printing should always print a suffix. Previously we didn't parse or print an 'l' suffix.
cvtt*2si/cvt*2si should parse with an 'l' or 'q' suffix or not suffix at all. No suffix should use the destination register size to choose encoding. Printing should not print a suffix.
Original 'l' suffix issue with cvtsi2* pointed out by Michael Kuperstein.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171668 91177308-0d34-0410-b5e6-96231b3b80d8
interfaces which could be extracted from it, and must be provided on
construction, to a chained analysis group.
The end goal here is that TTI works much like AA -- there is a baseline
"no-op" and target independent pass which is in the group, and each
target can expose a target-specific pass in the group. These passes will
naturally chain allowing each target-specific pass to delegate to the
generic pass as needed.
In particular, this will allow a much simpler interface for passes that
would like to use TTI -- they can have a hard dependency on TTI and it
will just be satisfied by the stub implementation when that is all that
is available.
This patch is a WIP however. In particular, the "stub" pass is actually
the one and only pass, and everything there is implemented by delegating
to the target-provided interfaces. As a consequence the tools still have
to explicitly construct the pass. Switching targets to provide custom
passes and sinking the stub behavior into the NoTTI pass is the next
step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171621 91177308-0d34-0410-b5e6-96231b3b80d8
URL: http://llvm.org/viewvc/llvm-project?rev=171524&view=rev
Log:
The current Intel Atom microarchitecture has a feature whereby when a function
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.
When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.
It includes tests.
Patch by Andy Zhang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171603 91177308-0d34-0410-b5e6-96231b3b80d8
legality of an address mode to not use a struct of four values and
instead to accept them as parameters. I'd love to have named parameters
here as most callers only care about one or two of these, but the
defaults aren't terribly scary to write out.
That said, there is no real impact of this as the passes aren't yet
using STTI for this and are still relying upon TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171595 91177308-0d34-0410-b5e6-96231b3b80d8
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.
When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.
It includes tests.
Patch by Andy Zhang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171524 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the PPC eh_frame definitions for the personality and
frame unwinding for PIC objects. It makes PIC build correctly creates
relative relocations in the '.rela.eh_frame' segments and thus avoiding
a text relocation that generates a DT_TEXTREL segments in link phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171506 91177308-0d34-0410-b5e6-96231b3b80d8
1. Add code to estimate register pressure.
2. Add code to select the unroll factor based on register pressure.
3. Add bits to TargetTransformInfo to provide the number of registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171469 91177308-0d34-0410-b5e6-96231b3b80d8
Simplified TRUNCATE operation that comes after SETCC. It is possible since SETCC result is 0 or -1.
Added a test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171468 91177308-0d34-0410-b5e6-96231b3b80d8
In order to cost subvector insertion and extraction, we need to know
the type of the subvector being extracted.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171453 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171362 91177308-0d34-0410-b5e6-96231b3b80d8