review feedback.
-enable-eh is still accepted but doesn't do anything.
EH intrinsics use Dwarf EH if the target supports that,
and are handled by LowerInvoke otherwise.
The separation of the EH table and frame move data is,
I think, logically figured out, but either one still
causes full EH info to be generated (not sure how to
split the metadata correctly).
MachineModuleInfo::needsFrameInfo is no longer used and
is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49064 91177308-0d34-0410-b5e6-96231b3b80d8
not marked nounwind, or for all functions when -enable-eh
is set, provided the target supports Dwarf EH.
llvm-gcc generates nounwind in the right places; other FEs
will need to do so also. Given such a FE, -enable-eh should
no longer be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49006 91177308-0d34-0410-b5e6-96231b3b80d8
nodes. This doesn't currently have much impact the generated code, but it
does produce simpler-looking SelectionDAGs, and consequently
simpler-looking ScheduleDAGs, because there are fewer spurious
dependencies.
In particular, CopyValueToVirtualRegister now uses the entry node as the
input chain dependency for new CopyToReg nodes instead of calling getRoot
and depending on the most recent memory reference.
Also, rename UnorderedChains to PendingExports and pull it up from being
a local variable in SelectionDAGISel::BuildSelectionDAG to being a
member variable of SelectionDAGISel, so that it doesn't have to be
passed around to all the places that need it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48893 91177308-0d34-0410-b5e6-96231b3b80d8
flags. This is needed by the new legalize types
infrastructure which wants to expand the 64 bit
constants previously used to hold the flags on
32 bit machines. There are two functional changes:
(1) in LowerArguments, if a parameter has the zext
attribute set then that is marked in the flags;
before it was being ignored; (2) PPC had some bogus
code for handling two word arguments when using the
ELF 32 ABI, which was hard to convert because of
the bogusness. As suggested by the original author
(Nicolas Geoffray), I've disabled it for the moment.
Tested with "make check" and the Ada ACATS testsuite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48640 91177308-0d34-0410-b5e6-96231b3b80d8
getCopyToParts problem was noticed by the new
LegalizeTypes infrastructure. In order to avoid
this kind of thing in the future I've added a
check that EXTRACT_ELEMENT is only used with
integers. Once LegalizeTypes is up and running
most likely BUILD_PAIR and EXTRACT_ELEMENT can
be removed, in favour of using apints instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48294 91177308-0d34-0410-b5e6-96231b3b80d8
return ValueType can depend its operands' ValueType.
This is a cosmetic change, no functionality impacted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48145 91177308-0d34-0410-b5e6-96231b3b80d8
field to 32 bits, thus enabling correct handling of ByVal
structs bigger than 0x1ffff. Abstract interface a bit.
Fixes gcc.c-torture/execute/pr23135.c and
gcc.c-torture/execute/pr28982b.c in gcc testsuite (were ICE'ing
on ppc32, quietly producing wrong code on x86-32.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48122 91177308-0d34-0410-b5e6-96231b3b80d8
they are produced by calls (which are known exact) and by cross block copies
which are known to be produced by extends.
This improves:
define double @test2() {
%tmp85 = call double asm sideeffect "fld0", "={st(0)}"()
ret double %tmp85
}
from:
_test2:
subl $20, %esp
# InlineAsm Start
fld0
# InlineAsm End
fstpl 8(%esp)
movsd 8(%esp), %xmm0
movsd %xmm0, (%esp)
fldl (%esp)
addl $20, %esp
#FP_REG_KILL
ret
to:
_test2:
# InlineAsm Start
fld0
# InlineAsm End
#FP_REG_KILL
ret
by avoiding a f64 <-> f80 trip
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48108 91177308-0d34-0410-b5e6-96231b3b80d8
early clobbers if the clobber list contains a *register* not some thing
like {memory}, {dirflag} etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47457 91177308-0d34-0410-b5e6-96231b3b80d8
any, we force sdisel to do all regalloc for an asm. This
leads to gross but correct codegen.
This fixes the rest of PR2078.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47454 91177308-0d34-0410-b5e6-96231b3b80d8
inline asms.
Fix PR2078 by marking aliases of registers used when a register is
marked used. This prevents EAX from being allocated when AX is listed
in the clobber set for the asm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47426 91177308-0d34-0410-b5e6-96231b3b80d8
the return value is zero-extended if it isn't
sign-extended. It may also be any-extended.
Also, if a floating point value was returned
in a larger floating point type, pass 1 as the
second operand to FP_ROUND, which tells it
that all the precision is in the original type.
I think this is right but I could be wrong.
Finally, when doing libcalls, set isZExt on
a parameter if it is "unsigned". Currently
isSExt is set when signed, and nothing is
set otherwise. This should be right for all
calls to standard library routines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47122 91177308-0d34-0410-b5e6-96231b3b80d8
node as soon as we create it in SDISel. Previously we would lower it in
legalize. The problem with this is that it only exposes the argument
loads implied by FORMAL_ARGUMENTs after legalize, so that only dag combine 2
can hack on them. This causes us to miss some optimizations because
datatype expansion also happens here.
Exposing the loads early allows us to do optimizations on them. For example
we now compile arg-cast.ll to:
_foo:
movl $2147483647, %eax
andl 8(%esp), %eax
ret
where we previously produced:
_foo:
subl $12, %esp
movsd 16(%esp), %xmm0
movsd %xmm0, (%esp)
movl $2147483647, %eax
andl 4(%esp), %eax
addl $12, %esp
ret
It might also make sense to do this for ISD::CALL nodes, which have implicit
stores on many targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47054 91177308-0d34-0410-b5e6-96231b3b80d8
handle arbitrary precision integers and any number
of parts. For example, on a 32 bit machine an i50
corresponds to two i32 parts. getCopyToParts will
extend the i50 to an i64 then write half of the i64
to each part; getCopyFromParts will combine the two
i32 parts into an i64 then truncate the result to
i50.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47024 91177308-0d34-0410-b5e6-96231b3b80d8
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46659 91177308-0d34-0410-b5e6-96231b3b80d8
and switch various codegen pieces and the X86 backend over
to using it.
* Add some comments to SelectionDAGNodes.h
* Introduce a second argument to FP_ROUND, which indicates
whether the FP_ROUND changes the value of its input. If
not it is safe to xform things like fp_extend(fp_round(x)) -> x.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46125 91177308-0d34-0410-b5e6-96231b3b80d8
up to the various compiler pipelines.
This doesn't actually add support for any GC algorithms, which means it
temporarily breaks a few tests. To be fixed shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45669 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
to know about calls that cannot throw ('nounwind'):
if such a call does throw for some reason then the
personality will terminate the program. The distinction
between an ordinary call and a nounwind call is that
an ordinary call gets an entry in the exception table
but a nounwind call does not. This patch sets up the
exception table appropriately. One oddity is that
I've chosen to bracket nounwind calls with labels (like
invokes) - the other choice would have been to bracket
ordinary calls with labels. While bracketing
ordinary calls is more natural (because bracketing
by labels would then correspond exactly to getting an
entry in the exception table), I didn't do it because
introducing labels impedes some optimizations and I'm
guessing that ordinary calls occur more often than
nounwind calls. This fixes the gcc filter2 eh test,
at least at -O0 (the inliner needs some tweaking at
higher optimization levels).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45197 91177308-0d34-0410-b5e6-96231b3b80d8