this commit as the only one on the Blamelist so I quickly reverted this.
However it was actually Nick's change who has since fixed that issue.
Original commit message:
Changed the X86 assembler for intel syntax to work with directional labels.
The X86 assembler as a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following an Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197744 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 assembler has a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following the Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197728 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Mikulas Patocka. I added the test. I checked that for cpu names that
gas knows about, it also doesn't generate nopl.
The modified cpus:
i686 - there are i686-class CPUs that don't have nopl: Via c3, Transmeta
Crusoe, Microsoft VirtualBox - see
https://bbs.archlinux.org/viewtopic.php?pid=775414
k6, k6-2, k6-3, winchip-c6, winchip2 - these are 586-class CPUs
via c3 c3-2 - see https://bugs.archlinux.org/task/19733 as a proof that
Via c3 and c3-Nehemiah don't have nopl
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195679 91177308-0d34-0410-b5e6-96231b3b80d8
On darwin, when trying to create compact unwind info, a .cfi_cfa_def
directive would case an llvm_unreachable() to be hit. Back off when we
see this directive and generate the regular DWARF style eh_frame.
rdar://15406518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194285 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the instruction to be encoded using the 2-byte VEX form instead of the 3-byte VEX form. The GNU assembler has similar behavior and instruction selection already does this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192088 91177308-0d34-0410-b5e6-96231b3b80d8
Add basic assembly/disassembly support for the first Intel SHA
instruction 'sha1rnds4'. Also includes feature flag, and test cases.
Support for the remaining instructions will follow in a separate patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190611 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
For decoding, keep the current behavior of always decoding these as their REP
versions. In the future, this could be improved to recognize the cases where
these behave as XACQUIRE and XRELEASE and decode them as such.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184207 91177308-0d34-0410-b5e6-96231b3b80d8
The issue was that the MatchingInlineAsm and VariantID args to the
MatchInstructionImpl function weren't being set properly. Specifically, when
parsing intel syntax, the parser thought it was parsing inline assembly in the
at&t dialect; that will never be the case.
The crash was caused when the emitter tried to emit the instruction, but the
operands weren't set. When parsing inline assembly we only set the opcode, not
the operands, which is used to lookup the instruction descriptor.
rdar://13854391 and PR15945
Also, this commit reverts r176036. Now that we're correctly parsing the intel
syntax the pushad/popad don't match properly. I've reimplemented that fix using
a MnemonicAlias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181620 91177308-0d34-0410-b5e6-96231b3b80d8
unable to handle cases such as __asm mov eax, 8*-8.
This patch also attempts to simplify the state machine. Further, the error
reporting has been improved. Test cases included, but more will be added to
the clang side shortly.
rdar://13668445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179719 91177308-0d34-0410-b5e6-96231b3b80d8
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179266 91177308-0d34-0410-b5e6-96231b3b80d8
memory operands.
Essentially, this layers an infix calculator on top of the parsing state
machine. The scale on the index register is still expected to be an immediate
__asm mov eax, [eax + ebx*4]
and will not work with more complex expressions. For example,
__asm mov eax, [eax + ebx*(2*2)]
The plus and minus binary operators assume the numeric value of a register is
zero so as to not change the displacement. Register operands should never
be an operand for a multiply or divide operation; the scale*indexreg
expression is always replaced with a zero on the operand stack to prevent
such a case.
rdar://13521380
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178881 91177308-0d34-0410-b5e6-96231b3b80d8
one-byte NOPs. If the processor actually executes those NOPs, as it sometimes
does with aligned bundling, this can have a performance impact. From my
micro-benchmarks run on my one machine, a 15-byte NOP followed by twelve
one-byte NOPs is about 20% worse than a 15 followed by a 12. This patch
changes NOP emission to emit as many 15-byte (the maximum) as possible followed
by at most one shorter NOP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176464 91177308-0d34-0410-b5e6-96231b3b80d8
This is complicated by backward labels (e.g., 0b can be both a backward label
and a binary zero). The current implementation assumes [0-9]b is always a
label and thus it's possible for 0b and 1b to not be interpreted correctly for
ms-style inline assembly. However, this is relatively simple to fix in the
inline assembly (i.e., drop the [bB]).
This patch also limits backward labels to [0-9]b, so that only 0b and 1b are
ambiguous.
Part of rdar://12470373
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174983 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when a fragment is relaxed, its size is modified, but its
offset is not (it gets laid out as a side effect of checking whether
it needs relaxation), then all subsequent fragments are invalidated
because their offsets need to change. When bundling is enabled,
relaxed fragments need to get laid out again, because the increase in
size may push it over a bundle boundary. So instead of only
invalidating subsequent fragments, also invalidate the fragment that
gets relaxed, which causes it to get laid out again.
This patch also fixes some trailing whitespace and fixes the
bundling-related debug output of MCFragments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174401 91177308-0d34-0410-b5e6-96231b3b80d8
make into the last commit.
Also, update the test-generation script to generate an exhaustive test for
align_to_end as well, and include the generated test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171811 91177308-0d34-0410-b5e6-96231b3b80d8
cvtsi2* should parse with an 'l' or 'q' suffix or no suffix at all. No suffix should be treated the same as 'l' suffix. Printing should always print a suffix. Previously we didn't parse or print an 'l' suffix.
cvtt*2si/cvt*2si should parse with an 'l' or 'q' suffix or not suffix at all. No suffix should use the destination register size to choose encoding. Printing should not print a suffix.
Original 'l' suffix issue with cvtsi2* pointed out by Michael Kuperstein.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171668 91177308-0d34-0410-b5e6-96231b3b80d8
the script generating it. The test should never be modified manually. If anyone
needs to change it, please change the script and re-run it.
The script is placed into utils/testgen - I couldn't think of a better place,
and after some discussion on IRC this looked like a logical location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170720 91177308-0d34-0410-b5e6-96231b3b80d8
When an instruction as written requires 32-bit mode and we're assembling
in 64-bit mode, or vice-versa, issue a more specific diagnostic about
what's wrong.
rdar://12700702
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167937 91177308-0d34-0410-b5e6-96231b3b80d8
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167573 91177308-0d34-0410-b5e6-96231b3b80d8
The assembly string for the VMOVPQIto64rr instruction incorrectly lacked the 'v'
prefix, resulting in mis-assembly of the vanilla movd instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162963 91177308-0d34-0410-b5e6-96231b3b80d8
Corrected type for index of llvm.x86.avx2.gather.d.pd.256
from 256-bit to 128-bit.
Corrected types for src|dst|mask of llvm.x86.avx2.gather.q.ps.256
from 256-bit to 128-bit.
Support the following intrinsics:
llvm.x86.avx2.gather.d.q, llvm.x86.avx2.gather.q.q
llvm.x86.avx2.gather.d.q.256, llvm.x86.avx2.gather.q.q.256
llvm.x86.avx2.gather.d.d, llvm.x86.avx2.gather.q.d
llvm.x86.avx2.gather.d.d.256, llvm.x86.avx2.gather.q.d.256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159402 91177308-0d34-0410-b5e6-96231b3b80d8
This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157634 91177308-0d34-0410-b5e6-96231b3b80d8
instruction's destination operand like it does for the source operand.
Also fix a typo in the comment for X86AsmParser::isSrcOp().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152654 91177308-0d34-0410-b5e6-96231b3b80d8