Covers quite a few extra instructions (like any of the max/min ones
which were broken until recently on ARM64).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206575 91177308-0d34-0410-b5e6-96231b3b80d8
Code mostly copied from AArch64, just tidied up a trifle and plumbed
into the ARM64 way of doing things.
This also enables the AArch64 tests which inspired the previous
untested commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206574 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 was scalarizing some vector comparisons which don't quite map to
AArch64's compare and mask instructions. AArch64's approach of sacrificing a
little efficiency to emulate them with the limited set available was better, so
I ported it across.
More "inspired by" than copy/paste since the backend's internal expectations
were a bit different, but the tests were invaluable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206570 91177308-0d34-0410-b5e6-96231b3b80d8
I enhanced it a little in the process. The decision shouldn't really be beased
on whether a BUILD_VECTOR is a splat: any set of constants will do the job
provided they're related in the correct way.
Also, the BUILD_VECTOR could be any operand of the incoming AND nodes, so it's
best to check for all 4 possibilities rather than assuming it'll be the RHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206569 91177308-0d34-0410-b5e6-96231b3b80d8
It's not actually used to handle C or C++ ABI rules on ARM64, but could well be
emitted by other language front-ends, so it's as well to have a sensible
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206568 91177308-0d34-0410-b5e6-96231b3b80d8
These ones used completely different sets of intrinsics, so the only way to do
it is create a separate ARM64 copy and change them all.
Other than that, CodeGen was straightforward, no deficiencies detected here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206392 91177308-0d34-0410-b5e6-96231b3b80d8
The most important part here is that we should actuall emit the stubs we refer
to in the exception table, but as a side issue this uses more sensible & GCC
compatible representations for some of the bits of information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206380 91177308-0d34-0410-b5e6-96231b3b80d8
If we know that a particular 64-bit constant has all high bits zero, then we
can rely on the fact that 32-bit ARM64 instructions automatically zero out the
high bits of an x-register. This gives the expansion logic less constraints to
satisfy and so sometimes allows it to pick better sequences.
Came up while porting test/CodeGen/AArch64/movw-consts.ll: this will allow a
32-bit MOVN to be used in @test8 soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206379 91177308-0d34-0410-b5e6-96231b3b80d8
This particular DAG combine is designed to kick in when both ConstantFPs will
end up being loaded via a litpool, however those nodes have a semi-legal
status, dictated by isFPImmLegal so in some cases there wouldn't have been a
litpool in the first place. Don't try to be clever in those circumstances.
Picked up while merging some AArch64 tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206365 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes we need emit the bits that would actually be a MOVN when producing a
relocated MOVZ instruction (don't ask). But not always, a check which ARM64 got
wrong until now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206289 91177308-0d34-0410-b5e6-96231b3b80d8
I've left the MachO CodeGen as it is, there's a reasonable chance it should use
the GOT like ConstPools, but I'm not certain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206288 91177308-0d34-0410-b5e6-96231b3b80d8
This brings it into line with the AArch64 behaviour and should open the way for
certain OpenCL features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206286 91177308-0d34-0410-b5e6-96231b3b80d8
Code is mostly copied directly across, with a slight extension of the
ISelDAGToDAG function so that it can cope with the floating-point constants
being behind a litpool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206285 91177308-0d34-0410-b5e6-96231b3b80d8
Code change is because optimizeCompareInstr didn't know how to pull the
condition code out of FCSEL instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206171 91177308-0d34-0410-b5e6-96231b3b80d8
There was one definite issue in ARM64 (the off-by-1 check for whether
a shift could be folded in) and one difference that is probably
correct: ARM64 didn't fold nodes with multiple uses into the
arithmetic operations unless optimising for code size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206168 91177308-0d34-0410-b5e6-96231b3b80d8
This transformation is only valid when being used for an EQ or NE
comparison since the flags change otherwise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206167 91177308-0d34-0410-b5e6-96231b3b80d8
In AArch64 i64 to i32 truncate operation is a subregister access.
This allows more opportunities for LSR optmization to eliminate
variables of different types (i32 and i64).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205925 91177308-0d34-0410-b5e6-96231b3b80d8
When register allocator's stage is RS_Spill, we choose spill over using the CSR
for the first time, if the spill cost is lower than CSRCost.
When register allocator's stage is < RS_Split, we choose pre-splitting over
using the CSR for the first time, if the cost of splitting is lower than
CSRCost.
CSRCost is set with command-line option "regalloc-csr-first-time-cost". The
default value is 0 to generate the same codes as before this commit.
With a value of 15 (1 << 14 is the entry frequency), I measured performance
gain of 3% on 253.perlbmk and 1.7% on 197.parser, with instrumented PGO,
on an arm device.
rdar://16162005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204690 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, only regular AArch64 instructions were annotated with SchedRW lists.
This patch does the same for NEON enabling these instructions to be scheduled by
the MIScheduler. Additionally, store operations are now modeled and a few
SchedRW lists were updated for bug fixes (e.g. multiple def operands).
Reviewers: apazos, mcrosier, atrick
Patch by Dave Estes <cestes@codeaurora.org>!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204505 91177308-0d34-0410-b5e6-96231b3b80d8
.data_region is only used in Darwin, so it shouldn't be generated
for other OS. Currently AArch64 doesn't support darwin yet, so
I removed it from AArch64. When Darwin is supported someday, we can
add it back and associate it with Darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204424 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
The function was making too many assumptions about its input:
1. The NEON_VDUP optimisation was far too aggressive, assuming (I
think) that the input would always be BUILD_VECTOR.
2. We were treating most unknown concats as legal (by returning Op
rather than SDValue()). I think only concats of pairs of vectors are
actually legal.
http://llvm.org/PR19094
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203450 91177308-0d34-0410-b5e6-96231b3b80d8
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8