- Remove custom lowering for BRCOND
- Add remaining functionality for branches in SPUInstrInfo, such as branch
condition reversal and load/store folding. Updated BrCond test to reflect
branch reversal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61597 91177308-0d34-0410-b5e6-96231b3b80d8
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61542 91177308-0d34-0410-b5e6-96231b3b80d8
instruction sequence and cannot ordinarily be simplified by DAGcombine
into the various target description files or SPUDAGToDAGISel.cpp.
This makes some 64-bit operations legal.
- Eliminate target-dependent ISD enums.
- Update tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61508 91177308-0d34-0410-b5e6-96231b3b80d8
DAGcombine's ability to find reasons to remove truncates when they were not
needed. Consequently, the CellSPU backend would produce correct, but _really
slow and horrible_, code.
Replaced with instruction sequences that do the equivalent truncation in
SPUInstrInfo.td.
- Re-examine how unaligned loads and stores work. Generated unaligned
load code has been tested on the CellSPU hardware; see the i32operations.c
and i64operations.c in CodeGen/CellSPU/useful-harnesses. (While they may be
toy test code, it does prove that some real world code does compile
correctly.)
- Fix truncating stores in bug 3193 (note: unpack_df.ll will still make llc
fault because i64 ult is not yet implemented.)
- Added i64 eq and neq for setcc and select/setcc; started new instruction
information file for them in SPU64InstrInfo.td. Additional i64 operations
should be added to this file and not to SPUInstrInfo.td.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61447 91177308-0d34-0410-b5e6-96231b3b80d8
constant shift count that doesn't fit in the shift instruction's
immediate field. This fixes PR3242.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61281 91177308-0d34-0410-b5e6-96231b3b80d8
172 %ECX<def> = MOV32rr %reg1039<kill>
180 INLINEASM <es:subl $5,$1
sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
188 %EAX<def> = MOV32rr %EAX<kill>
196 %ECX<def> = MOV32rr %ECX<kill>
204 %ECX<def> = MOV32rr %ECX<kill>
212 %EAX<def> = MOV32rr %EAX<kill>
220 %EAX<def> = MOV32rr %EAX
228 %reg1039<def> = MOV32rr %ECX<kill>
The early clobber operand ties ECX input to the ECX def.
The live interval of ECX is represented as this:
%reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
The right way to represent this is something like
%reg20,inf = [46,47:2)[174,182:1)[181:230:0) 0@174-(182) 1@181-230 @2@46-(47)
Of course that won't work since that means overlapping live ranges defined by two val#.
The workaround for now is to add a bit to val# which says the val# is redefined by a early clobber def somewhere. This prevents the move at 228 from being optimized away by SimpleRegisterCoalescing::AdjustCopiesBackFrom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61259 91177308-0d34-0410-b5e6-96231b3b80d8
- Use SplitBlockPredecessors to factor out common predecessors of the critical edge destination. This is disabled for now due to some regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61248 91177308-0d34-0410-b5e6-96231b3b80d8
The EH_frame and .eh symbols are now private, except for darwin9 and earlier.
The patch also fixes the definition of PrivateGlobalPrefix on pcc linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61242 91177308-0d34-0410-b5e6-96231b3b80d8
DAGTypeLegalizer::ExpandShiftWithKnownAmountBit.
In terms of restoring the optimization, the best fix here isn't
obvious... any ideas?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61119 91177308-0d34-0410-b5e6-96231b3b80d8
computation code. Also, avoid adding output-depenency edges when both
defs are dead, which frequently happens with EFLAGS defs.
Compute Depth and Height lazily, and always in terms of edge latency
values. For the schedulers that don't care about latency, edge latencies
are set to 1.
Eliminate Cycle and CycleBound, and LatencyPriorityQueue's Latencies array.
These are all subsumed by the Depth and Height fields.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61073 91177308-0d34-0410-b5e6-96231b3b80d8
and insert vector element. Modified extract vector element to extend the
result to match the expected promoted type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61029 91177308-0d34-0410-b5e6-96231b3b80d8
which are identical to the original patterns.
- Change the multiply with overflow so that we distinguish between signed and
unsigned multiplication. Currently, unsigned multiplication with overflow
isn't working!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60963 91177308-0d34-0410-b5e6-96231b3b80d8
for promoted integer types, eg: i16 on ppc-32, or
i24 on any platform. Complete support for arbitrary
precision integers would require handling expanded
integer types, eg: i128, but I couldn't be bothered.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60834 91177308-0d34-0410-b5e6-96231b3b80d8
overflow/carry from the "arithmetic with overflow" intrinsics. It searches the
machine basic block from bottom to top to find the SETO/SETC instruction that is
its conditional. If an instruction modifies EFLAGS before it reaches the
SETO/SETC instruction, then it defaults to the normal instruction emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60807 91177308-0d34-0410-b5e6-96231b3b80d8
target-independent way of determining overflow on multiplication. It's very
tricky. Patch by Zoltan Varga!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60800 91177308-0d34-0410-b5e6-96231b3b80d8
essential problem was that the DAG can contain
random unused nodes which were never analyzed.
When remapping a value of a node being processed,
such a node may become used and need to be analyzed;
however due to operands being transformed during
analysis the node may morph into a different one.
Users of the morphing node need to be updated, and
this wasn't happening. While there I added a bunch
of documentation and sanity checks, so I (or some
other poor soul) won't have to scratch their head
over this stuff so long trying to remember how it
was all supposed to work next time some obscure
problem pops up! The extra sanity checking exposed
a few places where invariants weren't being preserved,
so those are fixed too. Since some of the sanity
checking is expensive, I added a flag to turn it
on. It is also turned on when building with
ENABLE_EXPENSIVE_CHECKS=1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60797 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix call.ll and call_indirect.ll expected results, now that it's using a
different pre-register allocation scheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60741 91177308-0d34-0410-b5e6-96231b3b80d8
Fix the shift amount when unrolling a vector shift into scalar shifts.
Fix problem in getShuffleScalarElt where it assumes that the input of
a bit convert must be a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60740 91177308-0d34-0410-b5e6-96231b3b80d8
and use it in x86 address mode folding. Also, make
getRegForValue return 0 for illegal types even if it has a
ValueMap for them, because Argument values are put in the
ValueMap. This fixes PR3181.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60696 91177308-0d34-0410-b5e6-96231b3b80d8
loops when they can be subsumed into addressing modes.
Change X86 addressing mode check to realize that
some PIC references need an extra register.
(I believe this is correct for Linux, if not, I'm sure
someone will tell me.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60608 91177308-0d34-0410-b5e6-96231b3b80d8
1. GlobalBaseReg may have been spilled.
2. It may not be live at the use.
3. Spiller doesn't know this is happening so it won't prevent GlobalBaseReg from being spilled later (That by itself is a nasty hack. It's needed because we don't insert the reload until later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60595 91177308-0d34-0410-b5e6-96231b3b80d8
aren't part of the test suite but are generally useful nonetheless, and can
be expanded later to test the backend against the actual Cell SPU system.
There's basically no other good place to put this code, so put it here for
the time being.
- vecoperations.c: Vector shuffles for all supported vector types, tests
for v16i8 add and multiply.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60566 91177308-0d34-0410-b5e6-96231b3b80d8