This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230413 91177308-0d34-0410-b5e6-96231b3b80d8
Some old assembly code uses the cntlz alias for cntlzw, binutils supports this,
and we should too. Fixes PR22519.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228719 91177308-0d34-0410-b5e6-96231b3b80d8
veqv (vector equivalence)
vnand
vorc
I increased the AddedComplexity for these instructions to 500 to ensure they are generated instead of issuing other VSX instructions.
Phabricator review: http://reviews.llvm.org/D7469
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228580 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Kit Barton.
Add the vector count leading zeros instruction for byte, halfword,
word, and doubleword sizes. This is a fairly straightforward addition
after the changes made for vpopcnt:
1. Add the correct definitions for the various instructions in
PPCInstrAltivec.td
2. Make the CTLZ operation legal on vector types when using P8Altivec
in PPCISelLowering.cpp
Test Plan
Created new test case in test/CodeGen/PowerPC/vec_clz.ll to check the
instructions are being generated when the CTLZ operation is used in
LLVM.
Check the encoding and decoding in test/MC/PowerPC/ppc_encoding_vmx.s
and test/Disassembler/PowerPC/ppc_encoding_vmx.txt respectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228301 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Kit Barton.
Add the vector population count instructions for byte, halfword, word,
and doubleword sizes. There are two major changes here:
PPCISelLowering.cpp: Make CTPOP legal for vector types.
PPCRegisterInfo.td: Added v2i64 to the VRRC register
definition. This is needed for the doubleword variations of the
integer ops that were added in P8.
Test Plan
Test the instruction vpcnt* encoding/decoding in ppc64-encoding-vmx.s
Test the generation of the vpopcnt instructions for various vector
data types. When adding the v2i64 type to the Vector Register set, I
also needed to add the appropriate bit conversion patterns between
v2i64 and the existing vector types. Testing for these conversions
were also added in the test case by passing a different vector type as
a parameter into the test functions. There is also a run step that
will ensure the vpopcnt instructions are generated when the vsx
feature is disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228046 91177308-0d34-0410-b5e6-96231b3b80d8
Fill out our support for the floating-point status and control register
instructions (mcrfs and friends). As it turns out, these are necessary for
compiling src/test/harness_fp.h in TBB for PowerPC.
Thanks to Raf Schietekat for reporting the issue!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226070 91177308-0d34-0410-b5e6-96231b3b80d8
Newer POWER cores, and the A2, support the cmpb instruction. This instruction
compares its operands, treating each of the 8 bytes in the GPRs separately,
returning a 'mask' result of 0 (for false) or -1 (for true) in each byte.
Code generation support is added, in the form of a PPCISelDAGToDAG
DAG-preprocessing routine, that recognizes patterns close to what the
instruction computes (either exactly, or related by a constant masking
operation), and generates the cmpb instruction (along with any necessary
constant masking operation). This can be expanded if use cases arise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225106 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently, it supports generating, but not parsing, this expression.
Test added as well.
Test Plan: New test added, no regressions due to this.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6672
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224415 91177308-0d34-0410-b5e6-96231b3b80d8
Add assembler support for the fixed-point cache-inhibited load/store
instructions. These are hypervisor-level only, so don't get too excited ;)
Fixes PR21650.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222976 91177308-0d34-0410-b5e6-96231b3b80d8
The attn instruction is not part of the Power ISA, but is documented in the A2
user manual, and is accepted by the GNU assembler for the A2 and the POWER4+.
Reported as part of PR21650.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222712 91177308-0d34-0410-b5e6-96231b3b80d8
When processing an assignment in the integrated assembler that sets
a symbol to the value of another symbol, we need to copy the st_other
bits that encode the local entry point offset.
Modeled after MipsTargetELFStreamer::emitAssignment handling of the
ELF::STO_MIPS_MICROMIPS flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222672 91177308-0d34-0410-b5e6-96231b3b80d8
The VSX instruction definitions for lxsdx, lxvd2x, lxvdsx, and lxvw4x
incorrectly use the XForm_1 instruction format, rather than the
XX1Form instruction format. This is likely a pasto when creating
these instructions, which were based on lvx and so forth. This patch
uses the correct format.
The existing reformatting test (test/MC/PowerPC/vsx.s) missed this
because the two formats differ only in that XX1Form has an extension
to the target register field in bit 31. The tests for these
instructions used a target register of 7, so the default of 0 in bit
31 for XForm_1 didn't expose a problem. For register numbers 32-63
this would be noticeable. I've changed the test to use higher
register numbers to verify my change is effective.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219416 91177308-0d34-0410-b5e6-96231b3b80d8
Users of getSectionContents shouldn't try to pass in BSS or virtual
sections. In all instances, this is a bug in the code calling this
routine.
N.B. Some COFF implementations (like CL) will mark their BSS sections as
taking space on disk. This would confuse COFFObjectFile into thinking
the section is larger than the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218549 91177308-0d34-0410-b5e6-96231b3b80d8
Adds code generation support for dcbtst (data cache prefetch for write) and
icbt (instruction cache prefetch for read - Book E cores only).
We still end up with a 'cannot select' error for the non-supported prefetch
intrinsic forms. This will be fixed in a later commit.
Fixes PR20692.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216339 91177308-0d34-0410-b5e6-96231b3b80d8
For ori, they are unsigned, for addi, signed. Create a new target
expression type to handle this and evaluate Fixups accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215315 91177308-0d34-0410-b5e6-96231b3b80d8
since the operands are actually used on those cores. Provide aliases for
the only documented case in the newer Power ISA speec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215282 91177308-0d34-0410-b5e6-96231b3b80d8
when let can do the same thing. Keep the 64bit variants as codegen-only.
While they have a different register class, the encoding is the same for
32bit and 64bit mode. Having both present would otherwise confuse the
disassembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214636 91177308-0d34-0410-b5e6-96231b3b80d8