Buffered means a later divide may be executed out-of-order while a
prior divide is sitting (buffered) in a reservation station.
You can tell it's not pipelined, because operations that use it
reserve it for more than one cycle:
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
let Latency = 25;
let ResourceCycles = [1, 10];
}
We don't currently distinguish between an unpipeline operation and one
that is split into multiple micro-ops requiring the same unit. Except
that the later may have NumMicroOps > 1 if they also consume
issue/dispatch resources.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178519 91177308-0d34-0410-b5e6-96231b3b80d8
'@SECREL' is what is used by the Microsoft assembler, but GNU as expects '@SECREL32'.
With the patch, the MC-generated code works fine in combination with a recent GNU as (2.23.51.20120920 here).
Patch by David Nadlinger!
Differential Revision: http://llvm-reviews.chandlerc.com/D429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178427 91177308-0d34-0410-b5e6-96231b3b80d8
- RDRAND always clears the destination value when a random value is not
available (i.e. CF == 0). This value is truncated or zero-extended as
the false boolean value to be returned. Boolean simplification needs
to skip this 'zext' or 'trunc' node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178312 91177308-0d34-0410-b5e6-96231b3b80d8
To enable a load of a call address to be folded with that call, this
load is moved from outside of callseq into callseq. Such a moving
adds a non-glued node (that load) into a glued sequence. This non-glue
load is only removed when DAG selection folds them into a memory form
call instruction. When such instruction selection is disabled, it breaks
DAG schedule.
To prevent that, such moving is disabled when target favors register
indirect call.
Previous workaround disabling CALL32m/CALL64m insn selection is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178308 91177308-0d34-0410-b5e6-96231b3b80d8
form of call in preference to memory indirect on Atom.
In this case, the patch applies the optimization to the code for reloading
spilled registers.
The patch also includes changes to sibcall.ll and movgs.ll, which were
failing on the Atom buildbot after the first patch was applied.
This patch by Sriram Murali.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178193 91177308-0d34-0410-b5e6-96231b3b80d8
indirect through a memory address is to load the memory address into
a register and then call indirect through the register.
This patch implements this improvement by modifying SelectionDAG to
force a function address which is a memory reference to be loaded
into a virtual register.
Patch by Sriram Murali.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178171 91177308-0d34-0410-b5e6-96231b3b80d8
All Intel CPUs since Yonah look a lot alike, at least at the granularity
of the scheduling models. We can add more accurate models for
processors that aren't Sandy Bridge if required. Haswell will probably
need its own.
The Atom processor and anything based on NetBurst is completely
different. So are the non-Intel chips.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178080 91177308-0d34-0410-b5e6-96231b3b80d8
Now all x86 instructions that have itinerary classes also have SchedRW
lists. This is required before the new scheduling models can be used.
There are still unannotated instructions remaining, but they don't have
itinerary classes either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178051 91177308-0d34-0410-b5e6-96231b3b80d8
- It's still considered aligned when the specified alignment is larger
than the natural alignment;
- The new alignment for the high 128-bit vector should be min(16,
alignment) as the pointer is advanced by 16, a power-of-2 offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177947 91177308-0d34-0410-b5e6-96231b3b80d8
All the instructions tagged with IIC_DEFAULT had nothing in common, and
we already have a NoItineraries class to represent untagged
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177937 91177308-0d34-0410-b5e6-96231b3b80d8
- After moving logic recognizing vector shift with scalar amount from
DAG combining into DAG lowering, we declare to customize all vector
shifts even vector shift on AVX is legal. As a result, the cost model
needs special tuning to identify these legal cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177586 91177308-0d34-0410-b5e6-96231b3b80d8
- Move SRA/SRL/SHL lowering support from DAG combination to DAG lowering
to support extended 256-bit integer in AVX but not AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177478 91177308-0d34-0410-b5e6-96231b3b80d8
Add a new WriteZero SchedWrite type for the common dependency-breaking
instructions that clear a register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177442 91177308-0d34-0410-b5e6-96231b3b80d8