Checking the trailing letter of the mnemonic is insufficient. Be more thorough
in the scanning of the instruction to ensure that we correctly work with the
predicated mnemonics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198235 91177308-0d34-0410-b5e6-96231b3b80d8
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
with a fix to use integer 0 for DW_AT_low_pc since the relocation to the text section symbol was causing issues with COFF. Accordingly remove addLocalLabelAddress and machinery since we're not currently using it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198222 91177308-0d34-0410-b5e6-96231b3b80d8
r198196: Use a pointer to keep track of the skeleton unit for each normal unit and construct it up front.
r198199: Reapply r198196 with a fix to zero initialize the skeleton pointer.
r198202: Fix aranges and split dwarf by ensuring that the symbol and relocation back to the compile unit from the aranges section is to the skeleton unit and not the one in the dwo.
They could be reproducible with explicit target.
llvm/lib/MC/WinCOFFObjectWriter.cpp:224: bool {anonymous}::COFFSymbol::should_keep() const: Assertion `Section->Number != -1 && "Sections with relocations must be real!"' failed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198208 91177308-0d34-0410-b5e6-96231b3b80d8
back to the compile unit from the aranges section is to the skeleton
unit and not the one in the dwo.
Do this by adding a method to grab a forwarded on local sym and local
section by querying the skeleton if one exists and using that. Add
a few tests to verify the relocations are back to the correct section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198202 91177308-0d34-0410-b5e6-96231b3b80d8
and construct it up front. Add address ranges at the end and a helper
routine so that we're not needlessly using an indirction in the case
of split dwarf.
Update testcases according to the new ordering of attributes on
the compile unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198196 91177308-0d34-0410-b5e6-96231b3b80d8
For AArch64 backend, if DAGCombiner see "sext(setcc)", it will
combine them together to a single setcc with extended value type.
Then if it see "zext(setcc)", it assumes setcc is Vxi1, and try to
create "(and (vsetcc), (1, 1, ...)". While setcc isn't Vxi1,
DAGcombiner will create wrong node and get wrong code emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198190 91177308-0d34-0410-b5e6-96231b3b80d8
In order to provide compatibility with the GNU assembler, provide aliases for
pre-UAL mnemonics for floating point operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198172 91177308-0d34-0410-b5e6-96231b3b80d8
Schedule more conservatively to account for stalls on floating point
resources and latency. Use the AGU resource to model latency stalls
since it's shared between FP and LD/ST instructions. This might not be
completely accurate but should work well in practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198125 91177308-0d34-0410-b5e6-96231b3b80d8
vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.
Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.
This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.
Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198113 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU assembler supports .rep as an alias for .rept. This simply creates the
alias for it and introduces a test for both .rept and .rep.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198097 91177308-0d34-0410-b5e6-96231b3b80d8
widespread glibc bugs.
The glibc implementation of exp10 has a very serious precision bug in
version 2.15 (and older versions). This is still very widely used (the
current Ubuntu LTS for example uses it) and so it isn't reasonable to
make transforms that produce these functions. This fixes many
miscompiles introduced when we started transforming pow(10.0, ...) into
exp10, and it may have fixed other latent miscompiles where exp10
provided sufficient precision but exp10f did not.
This is all really horrible. The primary bug has been fixed for over
a year and glibc 2.18 works correctly for the test cases I have, but it
will be 2017 before the LTS using 2.15 is no longer supported by Ubuntu
(and thus reasonable for folks to be relying on). =[ We're either going
to need to live without these optimizations, or find a way to switch
behavior more dynamically than using simply the fact that the OS is
"Linux".
To make matters worse, there appears to be significant testing and
fixing of numerous other bugs in the exp10 family of functions right now
in glibc. While those haven't been causing problems I've seen in the
wild, it gives me concerns that we may need to wait until an even later
release of glibc before we can reliably transform code into exp10.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198093 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantSDNodes (or UNDEFs) into a simple BUILD_VECTOR.
For example, given the following sequence of dag nodes:
i32 C = Constant<1>
v4i32 V = BUILD_VECTOR C, C, C, C
v4i32 Result = SIGN_EXTEND_INREG V, ValueType:v4i1
The SIGN_EXTEND_INREG node can be folded into a build_vector since
the vector in input is a BUILD_VECTOR of constants.
The optimized sequence is:
i32 C = Constant<-1>
v4i32 Result = BUILD_VECTOR C, C, C, C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198084 91177308-0d34-0410-b5e6-96231b3b80d8
The .even directive aligns content to an evan-numbered address. This is an ARM
specific directive applicable to any section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198031 91177308-0d34-0410-b5e6-96231b3b80d8
E.g. the codegen result is
fmls v1.2s, v0.2s, v2.s[3]
which is expected to be
fmls v0.2s, v1.2s, v2.s[3]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198001 91177308-0d34-0410-b5e6-96231b3b80d8
...namely LOAD AND ADD, LOAD AND AND, LOAD AND OR and LOAD AND EXCLUSIVE OR.
LOAD AND ADD LOGICAL isn't really separately useful for LLVM.
I'll look at adding reusing the CC results in new year.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197985 91177308-0d34-0410-b5e6-96231b3b80d8
DAG.getVectorShuffle() doesn't always return a vector_shuffle node.
If mask is the exact sequence of it's operand(For example, operand_0
is v8i8, and the mask is 0, 1, 2, 3, 4, 5, 6, 7), it will directly
return that operand. So a check is added here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197967 91177308-0d34-0410-b5e6-96231b3b80d8
This failure caused by improper condition when lowering shuffle_vector
to scalar_to_vector. After this patch NEON_VDUP with v1i64 will not
be generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197966 91177308-0d34-0410-b5e6-96231b3b80d8
Check for single use of fmul node in fused multiply patterns
to allow generation of fused multiply add/sub instructions.
Otherwise fmul operation ends up being repeated more than
once which does not help peformance on targets with
only one MAC unit, as for example cortex-a53.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197929 91177308-0d34-0410-b5e6-96231b3b80d8
The correct pattern matching should be:
- fnmadd is (-Ra) + (-Rn)*Rm which should be matched as:
fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm))))
- fnmsub is (-Ra) + Rn*Rm which should be matched as
fma node:$Rn, node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra))))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197928 91177308-0d34-0410-b5e6-96231b3b80d8
Split sadd.with.overflow into add + sadd.with.overflow to allow
analysis and optimization. This should ideally be done after
InstCombine, which can perform code motion (eventually indvars should
run after all canonical instcombines). We want ISEL to recombine the
add and the check, at least on x86.
This is currently under an option for reducing live induction
variables: -liv-reduce. The next step is reducing liveness of IVs that
are live out of the overflow check paths. Once the related
optimizations are fully developed, reviewed and tested, I do expect
this to become default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197926 91177308-0d34-0410-b5e6-96231b3b80d8
(optional) DWARF sections, so compiling with -g does not result in
different code being generated.
rdar://problem/15623193
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197922 91177308-0d34-0410-b5e6-96231b3b80d8
The bkpt mnemonic has an implicit immediate constant of 0 unless otherwise
specified. Add an instruction alias for the unvalued breakpoint mnemonic to
treat it as a 0. This improves compatibility with GNU AS.
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197913 91177308-0d34-0410-b5e6-96231b3b80d8
If the Scalarizer scalarized a vector PHI but could not scalarize
all uses of it, it would insert a series of insertelements to reconstruct
the vector PHI value from the scalar ones. The problem was that it would
emit these insertelements immediately after the PHI, even if there were
other PHIs after it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197909 91177308-0d34-0410-b5e6-96231b3b80d8