This is far from complete, but it is enough to make it possible to write
test cases using i64 arguments.
Missing features:
- Floating point arguments.
- Receiving arguments on the stack.
- Calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178523 91177308-0d34-0410-b5e6-96231b3b80d8
Revision 177141 caused a regression in all but
mips64 little endian. That is because none of the
other Mips targets had test cases checking the
contents of the .eh_frame section. This patch fixes
both the llvm code and adds an assembler test case
to include the current 4 flavors.
The test cases unfortunately rely on llvm-objdump. A
preferable method would be to use a pretty printer output
such as what readelf -wf <elf_file> would give.
I also changed the name of the test case to correct a typo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178506 91177308-0d34-0410-b5e6-96231b3b80d8
We would also like to merge sequences that involve a variable index like in the
example below.
int index = *idx++
int i0 = c[index+0];
int i1 = c[index+1];
b[0] = i0;
b[1] = i1;
By extending the parsing of the base pointer to handle dags that contain a
base, index, and offset we can handle examples like the one above.
The dag for the code above will look something like:
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i8 load %index))))
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
The code that parses the tree ignores the intermediate sign extensions. However,
if there is a sign extension it needs to be on all indexes.
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (add (i8 load %index)
(i8 1))))
vs
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
radar://13536387
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178483 91177308-0d34-0410-b5e6-96231b3b80d8
The P7 and A2 have additional floating-point conversion instructions which
allow a direct two-instruction sequence (plus load/store) to convert from all
combinations (signed/unsigned i32/i64) <--> (float/double) (on previous cores,
only some combinations were directly available).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178480 91177308-0d34-0410-b5e6-96231b3b80d8
The popcntw instruction is available whenever the popcntd instruction is
available, and performs a separate popcnt on the lower and upper 32-bits.
Ignoring the high-order count, this can be used for the 32-bit input case
(saving on the explicit zero extension otherwise required to use popcntd).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178470 91177308-0d34-0410-b5e6-96231b3b80d8
This instruction is available on modern PPC64 CPUs, and is now used
to improve the SINT_TO_FP lowering (by eliminating the need for the
separate sign extension instruction and decreasing the amount of
needed stack space).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178446 91177308-0d34-0410-b5e6-96231b3b80d8
The existing SINT_TO_FP code for i32 -> float/double conversion was disabled
because it relied on broken EXTSW_32/STD_32 instruction definitions. The
original intent had been to enable these 64-bit instructions to be used on CPUs
that support them even in 32-bit mode. Unfortunately, this form of lying to
the infrastructure was buggy (as explained in the FIXME comment) and had
therefore been disabled.
This re-enables this functionality, using regular DAG nodes, but only when
compiling in 64-bit mode. The old STD_32/EXTSW_32 definitions (which were dead)
are removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178438 91177308-0d34-0410-b5e6-96231b3b80d8
'@SECREL' is what is used by the Microsoft assembler, but GNU as expects '@SECREL32'.
With the patch, the MC-generated code works fine in combination with a recent GNU as (2.23.51.20120920 here).
Patch by David Nadlinger!
Differential Revision: http://llvm-reviews.chandlerc.com/D429
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178427 91177308-0d34-0410-b5e6-96231b3b80d8
specific code paths.
This allows us to write code like:
if (__nvvm_reflect("FOO"))
// Do something
else
// Do something else
and compile into a library, then give "FOO" a value at kernel
compile-time so the check becomes a no-op.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178416 91177308-0d34-0410-b5e6-96231b3b80d8
Check that instruction selection can select multiply-add/sub DSP instructions
from a pattern that doesn't have intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178406 91177308-0d34-0410-b5e6-96231b3b80d8
derived class MipsSETargetLowering.
We shouldn't be generating madd/msub nodes if target is Mips16, since Mips16
doesn't have support for multipy-add/sub instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178404 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, objc-arc-expand will make sure that the
objc_retainAutoreleasedReturnValue, objc_autoreleaseReturnValue, and ret
will all have %call as an argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178382 91177308-0d34-0410-b5e6-96231b3b80d8
clang.arc.used is an interesting call for ARC since ObjCARCContract
needs to run to remove said intrinsic to avoid a linker error (since the
call does not exist).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178369 91177308-0d34-0410-b5e6-96231b3b80d8
Like nearbyint, rint can be implemented on PPC using the frin instruction. The
complication comes from the fact that rint needs to set the FE_INEXACT flag
when the result does not equal the input value (and frin does not do that). As
a result, we use a custom inserter which, after the rounding, compares the
rounded value with the original, and if they differ, explicitly sets the XX bit
in the FPSCR register (which corresponds to FE_INEXACT).
Once LLVM has better modeling of the floating-point environment we should be
able to (often) eliminate this extra complexity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178362 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are available on the P5x (and later) and on the A2. They
implement the standard floating-point rounding operations (floor, trunc, etc.).
One caveat: frin (round to nearest) does not implement "ties to even", and so
is only enabled in fast-math mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178337 91177308-0d34-0410-b5e6-96231b3b80d8
Mips assembler supports macros that allows the OR instruction
to have an immediate parameter. This patch adds an instruction
alias that converts this macro into a Mips ORI instruction.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178316 91177308-0d34-0410-b5e6-96231b3b80d8
- RDRAND always clears the destination value when a random value is not
available (i.e. CF == 0). This value is truncated or zero-extended as
the false boolean value to be returned. Boolean simplification needs
to skip this 'zext' or 'trunc' node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178312 91177308-0d34-0410-b5e6-96231b3b80d8
Mips assembler allows following to be used as aliased instructions:
jal $rs for jalr $rs
jal $rd,$rd for jalr $rd,$rs
This patch provides alias definitions in td files and test cases to show the usage.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178304 91177308-0d34-0410-b5e6-96231b3b80d8
Compiling in 32-bit mode on a P7 would assert after 64-bit DAG combines were
added for bswap with load/store. This is because these combines are really only
valid in 64-bit mode, regardless of the CPU (and this was not being checked).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178286 91177308-0d34-0410-b5e6-96231b3b80d8
Since we handle optimizable objc_retainBlocks through strength reduction
in OptimizableIndividualCalls, we know that all code after that point
will only see non-optimizable objc_retainBlock calls. IsForwarding is
only called by functions after that point, so it is ok to just classify
objc_retainBlock as non-forwarding.
<rdar://problem/13249661>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178285 91177308-0d34-0410-b5e6-96231b3b80d8
If an objc_retainBlock has the copy_on_escape metadata attached to it
AND if the block pointer argument only escapes down the stack, we are
allowed to strength reduce the objc_retainBlock to to an objc_retain and
thus optimize it.
Current there is logic in the ARC data flow analysis to handle
this case which is complicated and involved making distinctions in
between objc_retainBlock and objc_retain in certain places and
considering them the same in others.
This patch simplifies said code by:
1. Performing the strength reduction in the initial ARC peephole
analysis (ObjCARCOpts::OptimizeIndividualCalls).
2. Changes the ARC dataflow analysis (which runs after the peephole
analysis) to consider all objc_retainBlock calls to not be optimizable
(since if the call was optimizable, we would have strength reduced it
already).
This patch leaves in the infrastructure in the ARC dataflow analysis to
handle this case, which due to 2 will just be dead code. I am doing this
on purpose to separate the removal of the old code from the testing of
the new code.
<rdar://problem/13249661>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178284 91177308-0d34-0410-b5e6-96231b3b80d8
These are 64-bit load/store with byte-swap, and available on the P7 and the A2.
Like the similar instructions for 16- and 32-bit words, these are matched in the
target DAG-combine phase against load/store-bswap pairs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178276 91177308-0d34-0410-b5e6-96231b3b80d8
PPC ISA 2.06 (P7, A2, etc.) has a popcntd instruction. Add this instruction and
tell TTI about it so that popcount-loop recognition will know about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178233 91177308-0d34-0410-b5e6-96231b3b80d8