1) allows the use of RIP-relative addressing in 32-bit LEA instructions under
x86-64 (ILP32 and LP64)
2) separates the size of address registers in 64-bit LEA instructions from
control by ILP32/LP64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174208 91177308-0d34-0410-b5e6-96231b3b80d8
infrastructure on MCStreamer to test for whether there is an
MCELFStreamer object available.
This is just a cleanup on the AsmPrinter side of things, moving ad-hoc
tests of random APIs to a direct type query. But the AsmParser
completely broken. There were no tests, it just blindly cast its
streamer to an MCELFStreamer and started manipulating it.
I don't have a test case -- this actually failed on LLVM's own
regression test suite. Unfortunately the failure only appears when the
stars, compilers, and runtime align to misbehave when we read a pointer
to a formatted_raw_ostream as-if it were an MCAssembler. =/
UBSan would catch this immediately.
Many thanks to Matt for doing about 80% of the debugging work here in
GDB, Jim for helping to explain how exactly to fix this, and others for
putting up with the hair pulling that ensued during debugging it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174118 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> and dyn_cast<>. In several places, code is already hacking around
the absence of this, and there seem to be several interfaces that might
be lifted and/or devirtualized using this.
This change was based on a discussion with Jim Grosbach about how best
to handle testing for specific MCStreamer subclasses. He said that this
was the correct end state, and everything else was too hacky so
I decided to just make it so.
No functionality should be changed here, this is just threading the kind
through all the constructors and setting up the classof overloads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174113 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174054 91177308-0d34-0410-b5e6-96231b3b80d8
register for inline asm. This conforms to how gcc allows for effective
casting of inputs into gprs (fprs is already handled).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174008 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit of a large series which will add support for the
QPX vector instruction set to the PowerPC backend. This instruction set is
used on the IBM Blue Gene/Q supercomputers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173973 91177308-0d34-0410-b5e6-96231b3b80d8
and update ELF header e_flags.
Currently gathering information such as symbol,
section and data is done by collecting it in an
MCAssembler object. From MCAssembler and MCAsmLayout
objects ELFObjectWriter::WriteObject() forms and
streams out the ELF object file.
This patch just adds a few members to the MCAssember
class to store and access the e_flag settings. It
allows for runtime additions to the e_flag by
assembler directives. The standalone assembler can
get to MCAssembler from getParser().getStreamer().getAssembler().
This patch is the generic infrastructure and will be
followed by patches for ARM and Mips for their target
specific use.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173882 91177308-0d34-0410-b5e6-96231b3b80d8
Changing ARMBaseTargetMachine to return ARMTargetLowering intead of
the generic one (similar to x86 code).
Tests showing which instructions were added to cast when necessary
or cost zero when not. Downcast to 16 bits are not lowered in NEON,
so costs are not there yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173849 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM and Thumb variants of LDREXD and STREXD have different constraints and
take different operands. Previously the code expanding atomic operations didn't
take this into account and asserted in Thumb mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173780 91177308-0d34-0410-b5e6-96231b3b80d8
conditions are met:
1. They share the same operand and are in the same BB.
2. Both outputs are used.
3. The target has a native instruction that maps to ISD::FSINCOS node or
the target provides a sincos library call.
Implemented the generic optimization in sdisel and enabled it for
Mac OSX. Also added an additional optimization for x86_64 Mac OSX by
using an alternative entry point __sincos_stret which returns the two
results in xmm0 / xmm1.
rdar://13087969
PR13204
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173755 91177308-0d34-0410-b5e6-96231b3b80d8