as an (index,bool) pair. The bool flag records whether the kill is a
PHI kill or not. This code will be used to enable splitting of live
intervals containing PHI-kills.
A slight change to live interval weights introduced an extra spill
into lsr-code-insertion (outside the critical sections). The test
condition has been updated to reflect this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75097 91177308-0d34-0410-b5e6-96231b3b80d8
default, this option is not enabled to support clients who rely on
this behavior.
Fixes http://llvm.org/PR4483
A patch to allocate additional memory for globals after we run out is
forthcoming.
Patch by Reid Kleckner!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75059 91177308-0d34-0410-b5e6-96231b3b80d8
VSETCC must define all bits, which is different than it was documented
to before. Since all targets that implement VSETCC already have this
behavior, and we don't optimize based on this, just change the
documentation. We now get nice code for vec_compare.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74978 91177308-0d34-0410-b5e6-96231b3b80d8
uint8_t (via 'foo & 255'), i replaced this with an explicit (uint8_t)
cast which is equivalent, faster and more correct (silences
type-related warnings). Also, following coding standards I replaced
post-increment with pre-increment."
Patch by Ryan Flynn!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74929 91177308-0d34-0410-b5e6-96231b3b80d8
With the SVR4 ABI on PowerPC, vector arguments for vararg calls are passed differently depending on whether they are a fixed or a variable argument. Variable vector arguments always go into memory, fixed vector arguments are put
into vector registers. If there are no free vector registers available, fixed vector arguments are put on the stack.
The NumFixedArgs attribute allows to decide for an argument in a vararg call whether it belongs to the fixed or variable portion of the parameter list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74764 91177308-0d34-0410-b5e6-96231b3b80d8
Note, isUndef marker must be placed even on implicit_def def operand or else the scavenger will not ignore it. This is necessary because -O0 path does not use liveintervalanalysis, it treats implicit_def just like any other def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74601 91177308-0d34-0410-b5e6-96231b3b80d8
- This more or less amounts to a revert of r65379. I'm curious to know what
happened that caused this variable to become unused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74579 91177308-0d34-0410-b5e6-96231b3b80d8
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74564 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74518 91177308-0d34-0410-b5e6-96231b3b80d8
the SelectionDAG::getGlobalAddress function properly looks through
aliases to determine thread-localness, but then passes the GV* down
to GlobalAddressSDNode::GlobalAddressSDNode which does not. Instead
of passing down isTarget, just pass down the predetermined node
opcode. This fixes some assertions with out of tree changes I'm
working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74325 91177308-0d34-0410-b5e6-96231b3b80d8
The OpActions array had a limit of 32 value types, so change it to use
MVT::MAX_ALLOWED_VALUETYPE in its declaration and change the accesses to
this array to work with a VT.getSimpleVT() that is larger than 32.
Also, add a comment to the place where MVT::MAX_ALLOWED_VALUETYPE is
defined indicating that it must be a multiple of 32.
This is part of the work allow MVT::LAST_VALUETYPE be greater than 32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74130 91177308-0d34-0410-b5e6-96231b3b80d8
This change doubles the allowable value for MVT::LAST_VALUETYPE. It does
this by doing several things.
1. Introduces MVT::MAX_ALLOWED_LAST_VALUETYPE which in this change has a
value of 64. This value contains the current maximum for the
MVT::LAST_VALUETYPE.
2. Instead of checking "MVT::LAST_VALUETYPE <= 32", all of those uses
now become "MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_LAST_VALUETYPE"
3. Changes the dimension of the ValueTypeActions from 2 elements to four
elements and adds comments ahead of the declaration indicating the it is
"(MVT::MAX_ALLOWED_LAST_VALUETYPE/32) * 2". This at least lets us find
what is affected if and when MVT::MAX_ALLOWED_LAST_VALUETYPE gets
changed.
4. Adds initializers for the new elements of ValueTypeActions.
This does NOT add any types in MVT. That would be done separately.
This doubles the size of ValueTypeActions from 64 bits to 128 bits and
gives us the freedom to add more types for AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74110 91177308-0d34-0410-b5e6-96231b3b80d8
a bunch of code from all the targets, and eliminates nondeterministic
ordering of directives being emitted in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74096 91177308-0d34-0410-b5e6-96231b3b80d8
Support for .text relocations, implementing TargetELFWriter overloaded methods for x86/x86_64.
Use a map to track global values to their symbol table indexes
Code cleanup and small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73894 91177308-0d34-0410-b5e6-96231b3b80d8
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73381 91177308-0d34-0410-b5e6-96231b3b80d8
ADDC/ADDE use MVT::i1 (later, whatever it gets legalized to)
instead of MVT::Flag. Remove CARRY_FALSE in favor of 0; adjust
all target-independent code to use this format.
Most targets will still produce a Flag-setting target-dependent
version when selection is done. X86 is converted to use i32
instead, which means TableGen needs to produce different code
in xxxGenDAGISel.inc. This keys off the new supportsHasI1 bit
in xxxInstrInfo, currently set only for X86; in principle this
is temporary and should go away when all other targets have
been converted. All relevant X86 instruction patterns are
modified to represent setting and using EFLAGS explicitly. The
same can be done on other targets.
The immediate behavior change is that an ADC/ADD pair are no
longer tightly coupled in the X86 scheduler; they can be
separated by instructions that don't clobber the flags (MOV).
I will soon add some peephole optimizations based on using
other instructions that set the flags to feed into ADC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72707 91177308-0d34-0410-b5e6-96231b3b80d8
entries as there are basic blocks in the function. LiveVariables::getVarInfo
creates a VarInfo struct for every register in the function, leading to
quadratic space use. This patch changes the BitVector to a SparseBitVector,
which doesn't help the worst-case memory use but does reduce the actual use in
very long functions with short-lived variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72426 91177308-0d34-0410-b5e6-96231b3b80d8
will allow simplifying LegalizeDAG to eliminate type legalization. (I
have a patch to do that, but it's not quite finished; I'll commit it
once it's finished and I've fixed any review comments for this patch.)
See the comment at the beginning of
lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp for more details on the
motivation for this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72325 91177308-0d34-0410-b5e6-96231b3b80d8
code in preparation for code generation. The main thing it does
is handle the case when eh.exception calls (and, in a future
patch, eh.selector calls) are far away from landing pads. Right
now in practice you only find eh.exception calls close to landing
pads: either in a landing pad (the common case) or in a landing
pad successor, due to loop passes shifting them about. However
future exception handling improvements will result in calls far
from landing pads:
(1) Inlining of rewinds. Consider the following case:
In function @f:
...
invoke @g to label %normal unwind label %unwinds
...
unwinds:
%ex = call i8* @llvm.eh.exception()
...
In function @g:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
"rethrow exception"
Now inline @g into @f. Currently this is turned into:
In function @f:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
invoke "rethrow exception" to label %normal unwind label %unwinds
unwinds:
%ex = call i8* @llvm.eh.exception()
...
However we would like to simplify invoke of "rethrow exception" into
a branch to the %unwinds label. Then %unwinds is no longer a landing
pad, and the eh.exception call there is then far away from any landing
pads.
(2) Using the unwind instruction for cleanups.
It would be nice to have codegen handle the following case:
invoke @something to label %continue unwind label %run_cleanups
...
handler:
... perform cleanups ...
unwind
This requires turning "unwind" into a library call, which
necessarily takes a pointer to the exception as an argument
(this patch also does this unwind lowering). But that means
you are using eh.exception again far from a landing pad.
(3) Bugpoint simplifications. When bugpoint is simplifying
exception handling code it often generates eh.exception calls
far from a landing pad, which then causes codegen to assert.
Bugpoint then latches on to this assertion and loses sight
of the original problem.
Note that it is currently rare for this pass to actually do
anything. And in fact it normally shouldn't do anything at
all given the code coming out of llvm-gcc! But it does fire
a few times in the testsuite. As far as I can see this is
almost always due to the LoopStrengthReduce codegen pass
introducing pointless loop preheader blocks which are landing
pads and only contain a branch to another block. This other
block contains an eh.exception call. So probably by tweaking
LoopStrengthReduce a bit this can be avoided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72276 91177308-0d34-0410-b5e6-96231b3b80d8
The following is checked:
* Operand counts: All explicit operands must be present.
* Register classes: All physical and virtual register operands must be
compatible with the register class required by the instruction descriptor.
* Register live intervals: Registers must be defined only once, and must be
defined before use.
The machine code verifier is enabled with the command-line option
'-verify-machineinstrs', or by defining the environment variable
LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive all the
verifier errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71918 91177308-0d34-0410-b5e6-96231b3b80d8
of exception handling builtin sjlj targets in functions turns out not to
be necessary. Marking the intrinsic implementation in the .td file as
defining all registers is sufficient to get the context saved properly by
the containing function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71743 91177308-0d34-0410-b5e6-96231b3b80d8
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
a supporting preliminary patch for GCC-compatible SjLJ exception handling. Note that these intrinsics are not designed to be invoked directly by the user, but
rather used by the front-end as target hooks for exception handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71610 91177308-0d34-0410-b5e6-96231b3b80d8
checking for bcopy... no
checking for getc_unlocked... Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decUtility.c:360: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decUtility.o] Error 1
make[4]: *** Waiting for unfinished jobs....
Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decNumber.c:5591: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decNumber.o] Error 1
make[3]: *** [all-stage2-libdecnumber] Error 2
make[3]: *** Waiting for unfinished jobs....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71165 91177308-0d34-0410-b5e6-96231b3b80d8
shows up in -print-machineinstrs. This doesn't appear to affect anything, but it was
weird for some DBG_LABELs to have DebugLocs but not all of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70921 91177308-0d34-0410-b5e6-96231b3b80d8
VirtRegMap keeps track of allocations so it knows what's not used. As a horrible hack, the stack coloring can color spill slots with *free* registers. That is, it replace reload and spills with copies from and to the free register. It unfold instructions that load and store the spill slot and replace them with register using variants.
Not yet enabled. This is part 1. More coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70787 91177308-0d34-0410-b5e6-96231b3b80d8
Massive check in. This changes the "-fast" flag to "-O#" in llc. If you want to
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'll change the JIT with a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70343 91177308-0d34-0410-b5e6-96231b3b80d8
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'm not 100% sure if it's necessary to change it there...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70270 91177308-0d34-0410-b5e6-96231b3b80d8
PR2957
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70225 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69952 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a very subtle bug. vr defined by an implicit_def is allowed overlap with any register since it doesn't actually modify anything. However, if it's used as a two-address use, its live range can be extended and it can be spilled. The spiller must take care not to emit a reload for the vn number that's defined by the implicit_def. This is both a correctness and performance issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69743 91177308-0d34-0410-b5e6-96231b3b80d8
in the MachineFunction class, renaming it to addLiveIn for consistency with
the same method in MachineBasicBlock. Thanks for Anton for suggesting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69615 91177308-0d34-0410-b5e6-96231b3b80d8
value type union: this field was causing problems for
some compilers on 64 bit systems, presumably because
SimpleTy is 32 bits wide while the other fields are
64 bits wide.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69515 91177308-0d34-0410-b5e6-96231b3b80d8
type as the vector element type: allow them to be of
a wider integer type than the element type all the way
through the system, and not just as far as LegalizeDAG.
This should be safe because it used to be this way
(the old type legalizer would produce such nodes), so
backends should be able to handle it. In fact only
targets which have legal vector types with an illegal
promoted element type will ever see this (eg: <4 x i16>
on ppc). This fixes a regression with the new type
legalizer (vec_splat.ll). Also, treat SCALAR_TO_VECTOR
the same as BUILD_VECTOR. After all, it is just a
special case of BUILD_VECTOR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69467 91177308-0d34-0410-b5e6-96231b3b80d8
to support replacing a node with another that has a superset of
the result types. Use this instead of calling
ReplaceAllUsesOfValueWith for each value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69209 91177308-0d34-0410-b5e6-96231b3b80d8
promoted to legal types without changing the type of the vector. This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.
It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated. The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.
Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands. This patch updates all of the places that I could
find to handle that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68996 91177308-0d34-0410-b5e6-96231b3b80d8
Now debug_inlined section is covered by TAI->doesDwarfUsesInlineInfoSection(), which is false by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68964 91177308-0d34-0410-b5e6-96231b3b80d8
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68940 91177308-0d34-0410-b5e6-96231b3b80d8
Create debug_inlined dwarf section using these information. This info is used by gdb, at least on Darwin, to enable better experience debugging inlined functions. See DwarfWriter.cpp for more information on structure of debug_inlined section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68847 91177308-0d34-0410-b5e6-96231b3b80d8
the key. This will cause it to create a new std::string, which isn't
wanted. Instead, pass back the "const char*". Modify the EmitString() method to
take a "const char*".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68741 91177308-0d34-0410-b5e6-96231b3b80d8
register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68714 91177308-0d34-0410-b5e6-96231b3b80d8
Note that these are distinct from TargetInstrInfo::INSERT_SUBREG
and TargetInstrInfo::EXTRACT_SUBREG, which are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68355 91177308-0d34-0410-b5e6-96231b3b80d8
is appropriate. This helps visually differentiate host-oriented
calculations from target-oriented calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68227 91177308-0d34-0410-b5e6-96231b3b80d8
entered via fall-through. Don't miss fallthroughs from blocks
terminated by conditional branches. Also, move
isOnlyReachableByFallthrough out of line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68129 91177308-0d34-0410-b5e6-96231b3b80d8
only reachable via fall-through edges. This dramatically reduces the
number of labels printed, and thus also the number of labels the
assembler must parse and remember.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68073 91177308-0d34-0410-b5e6-96231b3b80d8