traceback table on PowerPC64. This helps gdb handle exceptions. The other
mandatory fields are ignored by gdb and harder to implement so just add
there a FIXME.
Patch by Bill Schmidt. PR13641.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162778 91177308-0d34-0410-b5e6-96231b3b80d8
Add subtargets for Freescale e500mc (32-bit) and e5500 (64-bit) to
the PowerPC backend.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162764 91177308-0d34-0410-b5e6-96231b3b80d8
it here, then a 'register-memory' version would wrongly get the commutative
flag.
<rdar://problem/12180135>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162741 91177308-0d34-0410-b5e6-96231b3b80d8
- Add a target-specific DAG optimization to recognize a pattern PTEST-able.
Such a pattern is a OR'd tree with X86ISD::OR as the root node. When
X86ISD::OR node has only its flag result being used as a boolean value and
all its leaves are extracted from the same vector, it could be folded into an
X86ISD::PTEST node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162735 91177308-0d34-0410-b5e6-96231b3b80d8
These extra flags are not required to properly order the atomic
load/store instructions. SelectionDAGBuilder chains atomics as if they
were volatile, and SelectionDAG::getAtomic() sets the isVolatile bit on
the memory operands of all atomic operations.
The volatile bit is enough to order atomic loads and stores during and
after SelectionDAG.
This means we set mayLoad on atomic_load, mayStore on atomic_store, and
mayLoad+mayStore on the remaining atomic read-modify-write operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162733 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions emitted to compute branch offsets now use immediate operands
instead of symbolic labels. This change was needed because there were problems
when R_MIPS_HI16/LO16 relocations were used to make shared objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162731 91177308-0d34-0410-b5e6-96231b3b80d8
In SelectionDAGLegalize::ExpandLegalINT_TO_FP, expand INT_TO_FP nodes without
using any f64 operations if f64 is not a legal type.
Patch by Stefan Kristiansson.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162728 91177308-0d34-0410-b5e6-96231b3b80d8
Allow load-immediates to be rematerialised in the register coalescer for
PPC. This makes test/CodeGen/PowerPC/big-endian-formal-args.ll fail,
because it relies on a register move getting emitted. The immediate load is
equivalent, so change this test case.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162727 91177308-0d34-0410-b5e6-96231b3b80d8
The 32-bit ABI requires CR bit 6 to be set if the call has fp arguments and
unset if it doesn't. The solution up to now was to insert a MachineNode to
set/unset the CR bit, which produces a CR vreg. This vreg was then copied
into CR bit 6. When the register allocator saw a bunch of these in the same
function, it allocated the set/unset CR bit in some random CR register (1
extra instruction) and then emitted CR moves before every vararg function
call, rather than just setting and unsetting CR bit 6 directly before every
vararg function call. This patch instead inserts a PPCcrset/PPCcrunset
instruction which are then matched by a dedicated instruction pattern.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162725 91177308-0d34-0410-b5e6-96231b3b80d8
The zeroextend IR instruction is lowered to an 'and' node with an immediate
mask operand, which in turn gets legalised to a sequence of ori's & ands.
This can be done more efficiently using the rldicl instruction.
Patch by Tobias von Koch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162724 91177308-0d34-0410-b5e6-96231b3b80d8
corresponding changes to existing tests for darwin triple to ensure that
same pattern is tested for bdver2 target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162655 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, instructions without a primary patterns wouldn't get their
properties inferred. Now, we use all single-instruction patterns for
inference, including 'def : Pat<>' instances.
This causes a lot of instruction flags to change.
- Many instructions no longer have the UnmodeledSideEffects flag because
their flags are now inferred from a pattern.
- Instructions with intrinsics will get a mayStore flag if they already
have UnmodeledSideEffects and a mayLoad flag if they already have
mayStore. This is because intrinsics properties are linear.
- Instructions with atomic_load patterns get a mayStore flag because
atomic loads can't be reordered. The correct workaround is to create
pseudo-instructions instead of using normal loads. PR13693.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162614 91177308-0d34-0410-b5e6-96231b3b80d8
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162572 91177308-0d34-0410-b5e6-96231b3b80d8
to prevent it from being clobbered. mips uses $gp to access small data section.
This bug was originally reported by Carl Norum.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162340 91177308-0d34-0410-b5e6-96231b3b80d8
IR that hasn't been through SimplifyCFG can look like this:
br i1 %b, label %r, label %r
Make sure we don't create duplicate Machine CFG edges in this case.
Fix the machine code verifier to accept conditional branches with a
single CFG edge.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162230 91177308-0d34-0410-b5e6-96231b3b80d8
this allows for better code generation.
Added a new DAGCombine transformation to convert FMAX and FMIN to FMANC and
FMINC, which are commutative.
For example:
movaps %xmm0, %xmm1
movsd LC(%rip), %xmm0
minsd %xmm1, %xmm0
becomes:
minsd LC(%rip), %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162187 91177308-0d34-0410-b5e6-96231b3b80d8
Add these transformations to the existing add/sub ones:
(and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
(or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
(xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
The selects can then be transformed to a single predicated instruction
by peephole.
This transformation will make it possible to eliminate the ISD::CAND,
COR, and CXOR custom DAG nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162176 91177308-0d34-0410-b5e6-96231b3b80d8
arithmetic instructions. However, when small data types are used, a truncate
node appears between the SETCC node and the arithmetic operation. This patch
adds support for this pattern.
Before:
xorl %esi, %edi
testb %dil, %dil
setne %al
ret
After:
xorb %dil, %sil
setne %al
ret
rdar://12081007
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162160 91177308-0d34-0410-b5e6-96231b3b80d8
PEI can't handle the pseudo-instructions. This can be removed when the
pseudo-instructions are replaced by normal predicated instructions.
Fixes PR13628.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162130 91177308-0d34-0410-b5e6-96231b3b80d8
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162097 91177308-0d34-0410-b5e6-96231b3b80d8
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162061 91177308-0d34-0410-b5e6-96231b3b80d8
Without fastcc support, the caller just falls through to CallingConv::C
for fastcc, but callee still uses fastcc, this inconsistency of calling
convention is a problem, and fastcc support can fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162013 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161994 91177308-0d34-0410-b5e6-96231b3b80d8
around. That's not how we do things. Besides, the commit message tells us that
it is covered by the GCC test suite.
------------------------------------------------------------------------
r127497 | zwarich | 2011-03-11 13:51:56 -0800 (Fri, 11 Mar 2011) | 3 lines
Fix the GCC test suite issue exposed by r127477, which was caused by stack
protector insertion not working correctly with unreachable code. Since that
revision was rolled out, this test doesn't actual fail before this fix.
------------------------------------------------------------------------
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161985 91177308-0d34-0410-b5e6-96231b3b80d8