I accidentally also used INC/DEC for unsigned arithmetic which doesn't work,
because INC/DEC don't set the required flag which is used for the overflow
check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215237 91177308-0d34-0410-b5e6-96231b3b80d8
This completes one item from the todo-list of r215125 "Generate masking
instruction variants with tablegen".
The AddedComplexity is needed just like for the k variant.
Added a codegen test based on valignq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215173 91177308-0d34-0410-b5e6-96231b3b80d8
The AddedComplexity is needed just like in avx512_perm_3src. There may be a
bug in the complexity computation...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215168 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
After adding the masking variants to several instructions, I have decided to
experiment with generating these from the non-masking/unconditional
variant. This will hopefully reduce the amount repetition that we currently
have in order to define an instruction with all its variants (for a reg/mem
instruction this would be 6 instruction defs and 2 Pat<> for the intrinsic).
The patch is the first cut that is currently only applied to valignd/q to make
the patch small.
A few notes on the approach:
* In order to stitch together the dag for both the conditional and the
unconditional patterns I pass the RHS of the set rather than the full
pattern (set dest, RHS).
* Rather than subclassing each instruction base class (e.g. AVX512AIi8),
with a masking variant which wouldn't scale, I derived the masking
instructions from a new base class AVX512 (this is just I<> with
Requires<HasAVX512>). The instructions derive from this now, plus a new set
of classes that add the format bits and everything else that instruction
base class provided (i.e. AVX512AIi8 vs. AVX512AIi8Base).
I hope we can go incrementally from here. I expect that:
* We will need different variants of the masking class. One example is
instructions requiring three vector sources. In this case we tie one of the
source operands to dest rather than a new implicit source operand ($src0)
* Add the zero-masking variant
* Add more AVX512*Base classes as new uses are added
I've looked at X86.td.expanded before and after to make sure that nothing got
lost for valignd/q.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215125 91177308-0d34-0410-b5e6-96231b3b80d8
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215111 91177308-0d34-0410-b5e6-96231b3b80d8
shuffle lowering.
This is closely related to the previous one. Here we failed to use the
source offset when swapping in the other case -- where we end up
swapping the *final* shuffle. The cause of this bug is a bit different:
I simply wasn't thinking about the fact that this mask is actually
a slice of a wide mask and thus has numbers that need SourceOffset
applied. Simple fix. Would be even more simple with an algorithm-y thing
to use here, but correctness first. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215095 91177308-0d34-0410-b5e6-96231b3b80d8
via the fuzz tester.
Here I missed an offset when round-tripping a value through a shuffle
mask. I got it right 2 lines below. See a problem? I do. ;] I'll
probably be adding a little "swap" algorithm which accepts a range and
two values and swaps those values where they occur in the range. Don't
really have a name for it, let me know if you do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215094 91177308-0d34-0410-b5e6-96231b3b80d8
through the new fuzzer.
This one is great: bad operator precedence led the modulus to happen at
the wrong point. All the asserts didn't fire because there were usually
the right values past the end of the 4 element region we were looking
at. Probably could have gotten a crash here with ASan + fuzzing, but the
correctness tests pinpointed this really nicely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215092 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Since pointers are 32-bit on x32 we can use ebp and esp as frame and stack
pointer. Some operations like PUSH/POP and CFI_INSTRUCTION still
require 64-bit register, so using 64-bit MachineFramePtr where required.
X86_64 NaCl uses 64-bit frame/stack pointers, however it's been found that
both isTarget64BitLP64 and isTarget64BitILP32 are true for NaCl. Addressing
this issue here as well by making isTarget64BitLP64 false.
Also mark hasReservedSpillSlot unreachable on X86. See inlined comments.
Test Plan: Add one new simple test and upgrade 2 existing with x32 target case.
Reviewers: nadav, dschuff
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D4617
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215091 91177308-0d34-0410-b5e6-96231b3b80d8
fuzz testing.
The function which tested for adjacency did what it said on the tin, but
when I called it, I wanted it to do something more thorough: I wanted to
know if the *pairs* of shuffle elements were adjacent and started at
0 mod 2. In one place I had the decency to try to test for this, but in
the other it was completely skipped, miscompiling this test case. Fix
this by making the helper actually do what I wanted it to do everywhere
I called it (and removing the now redundant code in one place).
I *really* dislike the name "canWidenShuffleElements" for this
predicate. If anyone can come up with a better name, please let me know.
The other name I thought about was "canWidenShuffleMask" but is it
really widening the mask to reduce the number of lanes shuffled? I don't
know. Naming things is hard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215089 91177308-0d34-0410-b5e6-96231b3b80d8
This changes Win64EHEmitter into a utility WinEH UnwindEmitter that can be
shared across multiple architectures and a target specific bit which is
overridden (Win64::UnwindEmitter). This enables sharing the section selection
code across X86 and the intended use in ARM for emitting unwind information for
Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215050 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR18916. I don't think we need to implement support for either
hybrid syntax. Nobody should write Intel assembly with '%' prefixes on
their registers or AT&T assembly without them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215031 91177308-0d34-0410-b5e6-96231b3b80d8
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214988 91177308-0d34-0410-b5e6-96231b3b80d8
test case to actually generate correct code.
The primary miscompile fixed here is that we weren't correctly handling
in-place elements in one half of a single-input v8i16 shuffle when
moving a dword of elements from that half to the other half. Some times,
we would clobber the in-place elements in forming the dword to move
across halves.
The fix to this involves forcibly marking the in-place inputs even when
there is no need to gather them into a dword, and to much more carefully
re-arrange the elements when grouping them into a dword to move across
halves. With these two changes we would generate correct shuffles for
the test case, but found another miscompile. There are also some random
perturbations of the generated shuffle pattern in SSE2. It looks like
a wash; more instructions in some cases fewer in others.
The second miscompile would corrupt the results into nonsense. This is
a buggy pattern in one of the added DAG combines. Mapping elements
through a PSHUFD when pairing redundant half-shuffles is *much* harder
than this code makes it out to be -- it requires reasoning about *all*
of where the input is used in the PSHUFD, not just one part of where it
is used. Plus, we can't combine a half shuffle *into* a PSHUFD but the
code didn't guard against it. I think this was just a bad idea and I've
just removed that aspect of the combine. No tests regress as
a consequence so seems OK.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214954 91177308-0d34-0410-b5e6-96231b3b80d8
not corrupting the mask by mutating it more times than intended. No
functionality changed (the results were non-overlapping so the old
version "worked" but was non-obvious).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214953 91177308-0d34-0410-b5e6-96231b3b80d8
a test case.
We also miscompile this test case which is showing a serious flaw in the
single-input v8i16 shuffle code. I've left the specific instruction
checks FIXME-ed out until I can address the bug in the single-input
code, but I wanted to separate out a significant functionality change to
produce correct code from a very simple and targeted crasher fix.
The miscompile problem stems from keeping track of inputs by value
rather than by index. As a consequence of doing this, we can't reliably
update those inputs because they might swap and we can't detect this
without copying the mask.
The blend code now uses indices for the input lists and this seems
strictly better. It also should make it easier to sort things and do
other cleanups. I think the time has come to simplify The Great Lambda
here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214914 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to what I did with the two-source permutation recently. (It's
almost too similar so that we should consider generating the masking variants
with some tablegen help.)
Both encoding and intrinsic tests are added as well. For the latter, this is
what the IR that the intrinsic test on the clang side generates.
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214890 91177308-0d34-0410-b5e6-96231b3b80d8
This controls the number of operands in the disassembler's x86OperandSets
table. The entries describe how the operand is encoded and its type.
Not to surprisingly 5 operands is insufficient for AVX512. Consider
VALIGNDrrik in the next patch. These are its operand specifiers:
{ /* 328 */
{ ENCODING_DUP, TYPE_DUP1 },
{ ENCODING_REG, TYPE_XMM512 },
{ ENCODING_WRITEMASK, TYPE_VK8 },
{ ENCODING_VVVV, TYPE_XMM512 },
{ ENCODING_RM_CD64, TYPE_XMM512 },
{ ENCODING_IB, TYPE_IMM8 },
},
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214889 91177308-0d34-0410-b5e6-96231b3b80d8
This was currently part of lowering to PALIGNR with some special-casing to
make interlane shifting work. Since AVX512F has interlane alignr (valignd/q)
and AVX512BW has vpalignr we need to support both of these *at the same time*,
e.g. for SKX.
This patch breaks out the common code and then add support to check both of
these lowering options from LowerVECTOR_SHUFFLE.
I also added some FIXMEs where I think the AVX512BW and AVX512VL additions
should probably go.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214888 91177308-0d34-0410-b5e6-96231b3b80d8
They have different semantics (valign is interlane while palingr is intralane)
and palingr is still needed even in the AVX512 context. According to the
latest spec AVX512BW provides these.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214887 91177308-0d34-0410-b5e6-96231b3b80d8
The packed integer pattern becomes the DAG pattern for rri and the packed
float, another Pat<> inside the multiclass.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214885 91177308-0d34-0410-b5e6-96231b3b80d8
found by a single test reduced out of a failure on llvm-stress.
The start of the problem (and the crash) came when we tried to use
a find of a non-used slot in the move-to half of the move-mask as the
target for two bad-half inputs. While if lucky this will be the first of
a pair of slots which we can place the bad-half inputs into, it isn't
actually guaranteed. This really isn't surprising, not sure what I was
thinking. The correct way to find the two unused slots is to look for
one of the *used* slots. We know it isn't that pair, and we can use some
modular arithmetic to find the other pair by masking off the odd bit and
adding 2 modulo 4. With this, we reliably found a viable pair of slots
for the bad-half inputs.
Sadly, that wasn't enough. We also had a wrong code bug that surfaced
when I reduced the test case for this where we would use the same slot
twice for the two bad inputs. This is because both of the bad inputs
could be in odd slots originally and thus the mod-2 mapping would
actually be the same. The whole point of the weird indexing into the
pair of empty slots was to try to leverage when the end result needed
the two bad-half inputs to be paired in a dword and pre-pair them in the
correct orrientation. This is less important with the powerful combining
we're now doing, and also easier and more reliable to achieve be noting
that we add the bad-half inputs in order. Thus, if they are in a dword
pair, the low part of that will be the first input in the sequence.
Always putting that in the low element will just do the right thing in
addition to computing the correct result.
Test case added. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214849 91177308-0d34-0410-b5e6-96231b3b80d8
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
When the last instruction prior to a function epilogue is a call, we
need to emit a nop so that the return address is not in the epilogue IP
range. This is consistent with MSVC's behavior, and may be a workaround
for a bug in the Win64 unwinder.
Differential Revision: http://reviews.llvm.org/D4751
Patch by Vadim Chugunov!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214775 91177308-0d34-0410-b5e6-96231b3b80d8
use of PACKUS. It's cleaner that way.
I looked at implementing clever combine-based folding of PACKUS chains
into PSHUFB but it is quite hard and doesn't seem likely to be worth it.
The most annoying part would be detecting that the correct masking had
been done to use PACKUS-style instructions as a blend operation rather
than there being any saturating as is indicated by its name. We generate
really nice code for what few test cases I've come up with that aren't
completely contrived for this by just directly prefering PSHUFB and so
let's go with that strategy for now. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214707 91177308-0d34-0410-b5e6-96231b3b80d8
patterns of v16i8 shuffles.
This implements one of the more important FIXMEs for the SSE2 support in
the new shuffle lowering. We now generate the optimal shuffle sequence
for truncate-derived shuffles which show up essentially everywhere.
Unfortunately, this exposes a weakness in other parts of the shuffle
logic -- we can no longer form PSHUFB here. I'll add the necessary
support for that and other things in a subsequent commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214702 91177308-0d34-0410-b5e6-96231b3b80d8
I spent some time looking into a better or more principled way to handle
this. For example, by detecting arbitrary "unneeded" ORs... But really,
there wasn't any point. We just shouldn't build blatantly wrong code so
late in the pipeline rather than adding more stages and logic later on
to fix it. Avoiding this is just too simple.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214680 91177308-0d34-0410-b5e6-96231b3b80d8
GCC 4.8.2 points out the ambiguity in evaluation of the assertion condition:
lib/Target/X86/X86FloatingPoint.cpp:949:49: warning: suggest parentheses around ‘&&’ within ‘||’ [-Wparentheses]
assert(STReturns == 0 || isMask_32(STReturns) && N <= 2);
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214672 91177308-0d34-0410-b5e6-96231b3b80d8
This makes EmitWindowsUnwindTables a virtual function and lowers the
implementation of the function to the X86WinCOFFStreamer. This method is a
target specific operation. This enables making the behaviour target dependent
by isolating it entirely to the target specific streamer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214664 91177308-0d34-0410-b5e6-96231b3b80d8