The 32-bit variants of the NEON scalar<->GPR move instructions are
also available in VFPv2. The 8- and 16-bit variants do require NEON.
Note that the checks in the test file are all -DAG because they are
checking a mixture of stdout and stderr, and the ordering is not
guaranteed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220288 91177308-0d34-0410-b5e6-96231b3b80d8
On ARM NEON, VAND with immediate (16/32 bits) is an alias to VBIC ~imm with
the same type size. Adding that logic to the parser, and generating VBIC
instructions from VAND asm files.
This patch also fixes the validation routines for NEON splat immediates which
were wrong.
Fixes PR20702.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218450 91177308-0d34-0410-b5e6-96231b3b80d8
The commit after this changes { } and 0bxx literals to be of type bits<n> and not int. This means we need to write exactly the right number of bits, and not rely on the values being silently zero extended for us.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215082 91177308-0d34-0410-b5e6-96231b3b80d8
It's bad enough that I have to look up 5 different levels of TableGen class
definitions to work out what bits go where in a simple NEON instruction anyway,
without having to keep track of umpteen unused parameters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207420 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for bytes replication feature, so it could be GAS compatible.
E.g. instructions below:
"vmov.i32 d0, 0xffffffff"
"vmvn.i32 d0, 0xabababab"
"vmov.i32 d0, 0xabababab"
"vmov.i16 d0, 0xabab"
are incorrect, but we could deal with such cases.
For first one we should emit:
"vmov.i8 d0, 0xff"
For second one ("vmvn"):
"vmov.i8 d0, 0x54"
For last two instructions it should emit:
"vmov.i8 d0, 0xab"
P.S.: In ARMAsmParser.cpp I have also fixed few nearby style issues in old code.
Just for keeping method bodies in harmony with themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207080 91177308-0d34-0410-b5e6-96231b3b80d8
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
FYI, re-committing this with a tweak so MemoryOp's default
constructor is trivial and will work with MSVC 2012. Thanks
to Reid Kleckner and Jim Grosbach for help with the tweak.
rdar://11312406
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205986 91177308-0d34-0410-b5e6-96231b3b80d8
It doesn't build with MSVC 2012, because MSVC doesn't allow union
members that have non-trivial default constructors. This change added
'SMLoc AlignmentLoc' to MemoryOp, which made MemoryOp's default ctor
non-trivial.
This reverts commit r205930.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205944 91177308-0d34-0410-b5e6-96231b3b80d8
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
rdar://11312406
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205930 91177308-0d34-0410-b5e6-96231b3b80d8
The Cyclone CPU is similar to swift for most LLVM purposes, but does have two
preferred instructions for zeroing a VFP register. This teaches LLVM about
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205309 91177308-0d34-0410-b5e6-96231b3b80d8
The front-end is now generating the generic @llvm.fabs for this
operation now, so the extra patterns are no longer needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201314 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly to the vshrn instructions, these are simple zext/sext + trunc
operations. Using normal LLVM IR should allow for better code, and more sharing
with the AArch64 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201093 91177308-0d34-0410-b5e6-96231b3b80d8
vshrn is just the combination of a right shift and a truncate (and the limits
on the immediate value actually mean the signedness of the shift doesn't
matter). Using that representation allows us to get rid of an ARM-specific
intrinsic, share more code with AArch64 and hopefully get better code out of
the mid-end optimisers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201085 91177308-0d34-0410-b5e6-96231b3b80d8
There was an extremely confusing proliferation of LLVM intrinsics to implement
the vacge & vacgt instructions. This combines them all into two polymorphic
intrinsics, shared across both backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200768 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the SHA instructions take a scalar i32 as one argument (largely because
they work on 160-bit hash fragments). This wasn't reflected in the IR
previously, with ARM and AArch64 choosing different types (<4 x i32> and <1 x
i32> respectively) which was ugly.
This makes all the affected intrinsics take a uniform "i32", allowing them to
become non-polymorphic at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200706 91177308-0d34-0410-b5e6-96231b3b80d8
The fused multiply instructions were added in VFPv4 but are still NEON
instructions, in particular they shouldn't be available on a Cortex-M4 not
matter how floaty it is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193342 91177308-0d34-0410-b5e6-96231b3b80d8
If an alias inherits directly from InstAlias then it doesn't get any default
"Requires" values, so llvm-mc will allow it even on architectures that don't
support the underlying instruction.
This tidies up the obvious VFP and NEON cases I found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193340 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r189648.
Fixes for the previously failing clang-side arm_neon_intrinsics test
cases will be checked in separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189841 91177308-0d34-0410-b5e6-96231b3b80d8
In addition to recognizing when the multiply's second argument is
coming from an explicit VDUPLANE, also look for a plain scalar
f32 reference and reference it via the corresponding vector
lane.
rdar://14870054
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189619 91177308-0d34-0410-b5e6-96231b3b80d8
Clang is now generating cleaner IR, so this removes the old variants which
should be completely unused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189481 91177308-0d34-0410-b5e6-96231b3b80d8
The vqdmlal and vqdmlls instructions are really just a fused pair consisting of
a vqdmull.sN and a vqadd.sN. This adds patterns to LLVM so that we can switch
Clang's CodeGen over to generating these instead of the special vqdmlal
intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189480 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions aren't particularly complicated and it's well worth having
patterns for some reasonably useful LLVM IR that will match them. Soon we
should be able to switch Clang over to producing this natural version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189335 91177308-0d34-0410-b5e6-96231b3b80d8
The instruction to convert between floating point and fixed point representations
takes an immediate operand for the number of fractional bits of the fixed point
value. ARMARM specifies that when that number of bits is zero, the assembler
should encode floating point/integer conversion instructions.
This patch adds the necessary instruction aliases to achieve this behaviour.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189009 91177308-0d34-0410-b5e6-96231b3b80d8
After Ulrich's r180677 (thanks!) TableGen is intelligent enough to
handle tied constraints involving complex operands properly, so
virtually all of the ARM custom converters are now unnecessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186810 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new class for non-predicable NEON instructions and a
new DecoderNamespace for v8 NEON instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186504 91177308-0d34-0410-b5e6-96231b3b80d8
The disassembly of VEXT instructions was too lax in the bits checked. This
fixes the case where the instruction affects Q-registers but a misaligned lane
was specified (should be UNDEFINED).
Patch by Amaury de la Vieuville
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183003 91177308-0d34-0410-b5e6-96231b3b80d8
These are aliases for VACGT and VACGE, respectively, with the source
operands reversed.
rdar://13638090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179575 91177308-0d34-0410-b5e6-96231b3b80d8
In my previous commit:
"Merge a f32 bitcast of a v2i32 extractelt
A vectorized sitfp on doubles will get scalarized to a sequence of an
extract_element of <2 x i32>, a bitcast to f32 and a sitofp.
Due to the the extract_element, and the bitcast we will uneccessarily generate
moves between scalar and vector registers."
I added a pattern containing a copy_to_regclass. The copy_to_regclass is
actually not needed.
radar://13191881
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175555 91177308-0d34-0410-b5e6-96231b3b80d8
A vectorized sitfp on doubles will get scalarized to a sequence of an
extract_element of <2 x i32>, a bitcast to f32 and a sitofp.
Due to the the extract_element, and the bitcast we will uneccessarily generate
moves between scalar and vector registers.
The patch fixes this by using a COPY_TO_REGCLASS and a EXTRACT_SUBREG to extract
the element from the vector instead.
radar://13191881
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175520 91177308-0d34-0410-b5e6-96231b3b80d8
assembler should also accept a two arg form, as the docuemntation specifies that
the first (destination) register is optional.
This patch uses TwoOperandAliasConstraint to add the two argument form.
It also fixes an 80-column formatting problem in:
test/MC/ARM/neon-bitwise-encoding
<rdar://problem/12909419> Clang rejects ARM NEON assembly instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175221 91177308-0d34-0410-b5e6-96231b3b80d8