of reserved registers.
Use RegisterClassInfo in RABasic as well. This slightly changes som
allocation orders because RegisterClassInfo puts CSR aliases last.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132581 91177308-0d34-0410-b5e6-96231b3b80d8
by non-CMP expressions. The executable test case (129821) would test
this as well, if we had an "-O0 -disable-arm-fast-isel" LLVM-GCC
tester. Alas, the ARM assembly would be very difficult to check with
FileCheck.
The thumb2-cbnz.ll test is affected; it generates larger code (tst.w
vs. cmp #0), but I believe the new version is correct.
rdar://problem/9298790
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131261 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Teach MachineCSE how to do simple cross-block CSE involving physregs. This allows, for example, eliminating duplicate cmpl's on x86. Part of rdar://problem/8259436 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130877 91177308-0d34-0410-b5e6-96231b3b80d8
These tests all follow the same pattern:
mov r2, r0
movs r0, #0
$CMP r2, r1
it eq
moveq r0, #1
bx lr
The first 'mov' can be eliminated by rematerializing 'movs r0, #0' below the
test instruction:
$CMP r0, r1
mov.w r0, #0
it eq
moveq r0, #1
bx lr
So far, only physreg coalescing can do that. The register allocators won't yet
split live ranges just to eliminate copies. They can learn, but this particular
problem is not likely to show up in real code. It only appears because r0 is
used for both the function argument and return value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130858 91177308-0d34-0410-b5e6-96231b3b80d8
more callee-saved registers and introduce copies. Only allows it if scheduling
a node above calls would end up lessen register pressure.
Call operands also has added ABI restrictions for register allocation, so be
extra careful with hoisting them above calls.
rdar://9329627
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130245 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes Thumb2 ADCS and SBCS lowering: <rdar://problem/9275821>.
t2ADCS/t2SBCS are now pseudo instructions, consistent with ARM, so the
assembly printer correctly prints the 's' suffix.
Fixes Thumb2 adde -> SBC matching to check for live/dead carry flags.
Fixes the internal ARM machine opcode mnemonic for ADCS/SBCS.
Fixes ARM SBC lowering to check for live carry (potential bug).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130048 91177308-0d34-0410-b5e6-96231b3b80d8
add <rd>, sp, #<imm8>
ldr <rd>, [sp, #<imm8>]
When the offset from sp is multiple of 4 and in range of 0-1020.
This saves code size by utilizing 16-bit instructions.
rdar://9321541
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129971 91177308-0d34-0410-b5e6-96231b3b80d8
Additional fixes:
Do something reasonable for subtargets with generic
itineraries by handle node latency the same as for an empty
itinerary. Now nodes default to unit latency unless an itinerary
explicitly specifies a zero cycle stage or it is a TokenFactor chain.
Original fixes:
UnitsSharePred was a source of randomness in the scheduler: node
priority depended on the queue data structure. I rewrote the recent
VRegCycle heuristics to completely replace the old heuristic without
any randomness. To make the ndoe latency adjustments work, I also
needed to do something a little more reasonable with TokenFactor. I
gave it zero latency to its consumers and always schedule it as low as
possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129421 91177308-0d34-0410-b5e6-96231b3b80d8
masks to match inversely for the code as is to work. For the example given
we actually want:
bfi r0, r2, #1, #1
not #0, however, given the way the pattern is written it's not possible
at the moment.
Fixes rdar://9177502
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128320 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127498 91177308-0d34-0410-b5e6-96231b3b80d8
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127459 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123991 91177308-0d34-0410-b5e6-96231b3b80d8
DAG. Disable using "-disable-sched-cycles".
For ARM, this enables a framework for modeling the cpu pipeline and
counting stalls. It also activates several heuristics to drive
scheduling based on the model. Scheduling is inherently imprecise at
this stage, and until spilling is improved it may defeat attempts to
schedule. However, this framework provides greater control over
tuning codegen.
Although the flag is not target-specific, it should have very little
affect on the default scheduler used by x86. The only two changes that
affect x86 are:
- scheduling a high-latency operation bumps the current cycle so independent
operations can have their latency covered. i.e. two independent 4
cycle operations can produce results in 4 cycles, not 8 cycles.
- Two operations with equal register pressure impact and no
latency-based stalls on their uses will be prioritized by depth before height
(height is irrelevant if no stalls occur in the schedule below this point).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123971 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122995 91177308-0d34-0410-b5e6-96231b3b80d8
Use the same COPY_TO_REGCLASS approach as for the 2-register *_sfp instructions.
This change made a big difference in the code generated for the
CodeGen/Thumb2/cross-rc-coalescing-2.ll test: The coalescer is still doing
a fine job, but some instructions that were previously moved outside the loop
are not moved now. It's using fewer VFP registers now, which is generally
a good thing, so I think the estimates for register pressure changed and that
affected the LICM behavior. Since that isn't obviously wrong, I've just
changed the test file. This completes the work for Radar 8711675.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121730 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise, a plain str/ldr should be used instead. Make sure we account for
that in prologue/epilogue code generation.
rdar://8745460
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121391 91177308-0d34-0410-b5e6-96231b3b80d8
state. Previously Thumb2 would restore sp from fp like this:
mov sp, r7
sub, sp, #4
If an interrupt is taken after the 'mov' but before the 'sub', callee-saved
registers might be clobbered by the interrupt handler. Instead, try
restoring directly from sp:
add sp, #4
Or, if necessary (with VLA, etc.) use a scratch register to compute sp and
then restore it:
sub.w r4, r7, #8
mov sp, r7
rdar://8465407
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119977 91177308-0d34-0410-b5e6-96231b3b80d8
Remove movePastCSLoadStoreOps and associated code for simple pointer
increments. Update routines that depended upon other opcodes for save/restore.
Adjust all testcases accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119725 91177308-0d34-0410-b5e6-96231b3b80d8
appear to differ on Linux. Try to make them pass on Linux.
Would be good for a Linux person to review this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119572 91177308-0d34-0410-b5e6-96231b3b80d8
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119548 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
There were a number of issues to fix up here:
* The "device" argument of the llvm.memory.barrier intrinsic should be
used to distinguish the "Full System" domain from the "Inner Shareable"
domain. It has nothing to do with using DMB vs. DSB instructions.
* The compiler should never need to emit DSB instructions. Remove the
ARMISD::SYNCBARRIER node and also remove the instruction patterns for DSB.
* Merge the separate DMB/DSB instructions for options only used for the
disassembler with the default DMB/DSB instructions. Add the default
"full system" option ARM_MB::SY to the ARM_MB::MemBOpt enum.
* Add a separate ARMISD::MEMBARRIER_MCR node for subtargets that implement
a data memory barrier using the MCR instruction.
* Fix up encodings for these instructions (except MCR).
I also updated the tests and added a few new ones to check for DMB options
that were not currently being exercised.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117756 91177308-0d34-0410-b5e6-96231b3b80d8
operand and one of them has a single use that is a live out copy, favor the
one that is live out. Otherwise it will be difficult to eliminate the copy
if the instruction is a loop induction variable update. e.g.
BB:
sub r1, r3, #1
str r0, [r2, r3]
mov r3, r1
cmp
bne BB
=>
BB:
str r0, [r2, r3]
sub r3, r3, #1
cmp
bne BB
This fixed the recent 256.bzip2 regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117675 91177308-0d34-0410-b5e6-96231b3b80d8
- Initial register pressure in the loop should be all the live defs into the
loop. Not just those from loop preheader which is often empty.
- When an instruction is hoisted, update register pressure from loop preheader
to the original BB.
- Treat only use of a virtual register as kill since the code is still SSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116956 91177308-0d34-0410-b5e6-96231b3b80d8