x86-32: 32-bit calls were named "call" not "calll". 64-bit calls were correctly
named "callq", so this only impacted x86-32.
This fixes rdar://8456370 - llvm-mc rejects 'calll'
This also exposes that mingw/64 is generating a 32-bit call instead of a 64-bit call,
I will file a bugzilla.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114534 91177308-0d34-0410-b5e6-96231b3b80d8
(sbbl x, x) sets the registers to 0 or ~0. Combined with two's complement arithmetic, we can fold
the intermediate AND and the ADD into a single SUB.
This fixes <rdar://problem/8449754>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114460 91177308-0d34-0410-b5e6-96231b3b80d8
CombinerAA cannot assume that different FrameIndex's never alias, but can instead use
MachineFrameInfo to get the actual offsets of these slots and check for actual aliasing.
This fixes CodeGen/X86/2010-02-19-TailCallRetAddrBug.ll and CodeGen/X86/tailcallstack64.ll
when CombinerAA is enabled, modulo a different register allocation sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114348 91177308-0d34-0410-b5e6-96231b3b80d8
NO path to the destination containing side effects, not that SOME path contains no side effects.
In practice, this only manifests with CombinerAA enabled, because otherwise the chain has little
to no branching, so "any" is effectively equivalent to "all".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114268 91177308-0d34-0410-b5e6-96231b3b80d8
1) Do forward copy propagation. This makes it easier to estimate the cost of the
instruction being sunk.
2) Break critical edges on demand, including cases where the value is used by
PHI nodes.
Critical edge splitting is not yet enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114227 91177308-0d34-0410-b5e6-96231b3b80d8
walking the asm arguments once and stashing their Values. This is
wrong because the same memory location can be in the list twice, and
if the first one has a sunkaddr substituted, the stashed value for the
second one will be wrong (use-after-free). PR 8154.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114104 91177308-0d34-0410-b5e6-96231b3b80d8
Since mem2reg isn't run at -O0, we get a ton of reloads from the stack,
for example, before, this code:
int foo(int x, int y, int z) {
return x+y+z;
}
used to compile into:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
movl 4(%rsp), %esi
addl %edx, %esi
movl (%rsp), %edx
addl %esi, %edx
movl %edx, %eax
addq $12, %rsp
ret
Now we produce:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
addl 4(%rsp), %edx ## Folded load
addl (%rsp), %edx ## Folded load
movl %edx, %eax
addq $12, %rsp
ret
Fewer instructions and less register use = faster compiles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113102 91177308-0d34-0410-b5e6-96231b3b80d8
there are clearly no stores between the load and the store. This fixes
this miscompile reported as PR7833.
This breaks the test/CodeGen/X86/narrow_op-2.ll optimization, which is
safe, but awkward to prove safe. Move it to X86's README.txt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112861 91177308-0d34-0410-b5e6-96231b3b80d8
check more strict, breaking some cases not checked in the
testsuite, but also exposes some foldings not done before,
as this example:
movaps (%rdi), %xmm0
movaps (%rax), %xmm1
movaps %xmm0, %xmm2
movss %xmm1, %xmm2
shufps $36, %xmm2, %xmm0
now is generated as:
movaps (%rdi), %xmm0
movaps %xmm0, %xmm1
movlps (%rax), %xmm1
shufps $36, %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112753 91177308-0d34-0410-b5e6-96231b3b80d8
This caused a miscompilation in WebKit where %RAX had conflicting defs when
RemoveCopyByCommutingDef was commuting a %EAX use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112751 91177308-0d34-0410-b5e6-96231b3b80d8
1) nuke ConstDataCoalSection, which is dead.
2) revise my previous patch for rdar://8018335,
which was completely wrong. Specifically, it doesn't
make sense to mark __TEXT,__const_coal as PURE_INSTRUCTIONS,
because it is for readonly data. templates (it turns out)
go to const_coal_nt. The real fix for rdar://8018335 was
to give ConstTextCoalSection a section kind of ReadOnly
instead of Text.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112496 91177308-0d34-0410-b5e6-96231b3b80d8
when the top elements of a vector are undefined. This happens all
the time for X86-64 ABI stuff because only the low 2 elements of
a 4 element vector are defined. For example, on:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
We used to produce (with SSE2, SSE4.1+ uses insertps):
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
We now produce:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm3
addss %xmm1, %xmm3
movaps %xmm2, %xmm0
unpcklps %xmm3, %xmm0
ret
This implements rdar://8368414
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112378 91177308-0d34-0410-b5e6-96231b3b80d8
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112101 91177308-0d34-0410-b5e6-96231b3b80d8
comparison is in a different basic block from the branch. In such
cases, the comparison's operands may not have initialized virtual
registers available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111709 91177308-0d34-0410-b5e6-96231b3b80d8
where the step value is an induction variable from an outer loop, to
avoid trouble trying to re-expand such expressions. This effectively
hides such expressions from indvars and lsr, which prevents them
from getting into trouble.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111317 91177308-0d34-0410-b5e6-96231b3b80d8
- Make foldMemoryOperandImpl aware of 256-bit zero vectors folding and support the 128-bit counterparts of AVX too.
- Make sure MOV[AU]PS instructions are only selected when SSE1 is enabled, and duplicate the patterns to match AVX.
- Add a testcase for a simple 128-bit zero vector creation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110946 91177308-0d34-0410-b5e6-96231b3b80d8
term goal here is to be able to match enough of vector_shuffle and build_vector
so all avx intrinsics which aren't mapped to their own built-ins but to
shufflevector calls can be codegen'd. This is the first (baby) step, support
building zeroed vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110897 91177308-0d34-0410-b5e6-96231b3b80d8
form of CMPSD (etc.) Matching a 128-bit memory
operand is wrong, the instruction uses only 64 bits
(same as ADDSD etc.) 8193553.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110491 91177308-0d34-0410-b5e6-96231b3b80d8
into test/CodeGen/X86, so that they aren't run when the x86 target is
not enabled.
Fix uglygep.ll to not be x86-specific.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110343 91177308-0d34-0410-b5e6-96231b3b80d8
nice farm in the country where it can play with other tests. And bunnies.
It is not clear what is being tested, and the revision history shows a bunch of
random changes to the expected instruction count. Clearly, we are just fudging
it to pass whenever it fails.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110118 91177308-0d34-0410-b5e6-96231b3b80d8
away from a computer now.
--- Reverse-merging r109881 into '.':
D test/CodeGen/X86/avx-intrinsics-x86.ll
D test/CodeGen/X86/avx-intrinsics-x86_64.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109959 91177308-0d34-0410-b5e6-96231b3b80d8
check the range of the constant when optimizing a comparison between a
constant and a sign_extend_inreg node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109854 91177308-0d34-0410-b5e6-96231b3b80d8
for lowering without sse2. Add a couple of new testcases.
Fixes a few libgomp tests and latent bugs. Remove a few todos.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109078 91177308-0d34-0410-b5e6-96231b3b80d8
update the current basic block in addition to the current insert
position, so that they remain consistent. This fixes rdar://8204072.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108765 91177308-0d34-0410-b5e6-96231b3b80d8
void foo() { __builtin_unreachable(); }
It will output the following on Darwin X86:
_func1:
Leh_func_begin0:
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
This prolog adds a new Call Frame Information (CFI) row to the FDE with an
address that is not within the address range of the code it describes -- part is
equal to the end of the function -- and therefore results in an invalid EH
frame. If we emit a nop in this situation, then the CFI row is now within the
address range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108568 91177308-0d34-0410-b5e6-96231b3b80d8
pass that inserted it.
It is no longer necessary to limit the live ranges of FP registers to a single
basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108536 91177308-0d34-0410-b5e6-96231b3b80d8
the function. We'll just turn it into a "trap" instruction instead.
The problem with not handling this is that it might generate a prologue without
the equivalent epilogue to go with it:
$ cat t.ll
define void @foo() {
entry:
unreachable
}
$ llc -o - t.ll -relocation-model=pic -disable-fp-elim -unwind-tables
.section __TEXT,__text,regular,pure_instructions
.globl _foo
.align 4, 0x90
_foo: ## @foo
Leh_func_begin0:
## BB#0: ## %entry
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
...
The unwind tables then have bad data in them causing all sorts of problems.
Fixes <rdar://problem/8096481>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108473 91177308-0d34-0410-b5e6-96231b3b80d8
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108465 91177308-0d34-0410-b5e6-96231b3b80d8
to keep "Text" in sync with the "pure instructions" section attribute.
Lack of this attribute was preventing the assembler from emitting
multibyte noops instructions for templates (and inlines, and other
coalesced stuff) and was causing the assembler to mismatch .o files.
This fixes rdar://8018335
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108461 91177308-0d34-0410-b5e6-96231b3b80d8
a zero. This situation arrises in Fortran code with induction variables
that start at 1 instead of 0. This fixes PR7651.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108424 91177308-0d34-0410-b5e6-96231b3b80d8
address cannot be allocated a register is in 32-bit mode where the first
three arguments are marked inreg. In that case EAX, EDX, and ECX will be
used for argument passing.
This fixes PR7610.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108327 91177308-0d34-0410-b5e6-96231b3b80d8
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108039 91177308-0d34-0410-b5e6-96231b3b80d8
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107987 91177308-0d34-0410-b5e6-96231b3b80d8
It is OK for an alias live range to overlap if there is a copy to or from the
physical register. CoalescerPair can work out if the copy is coalescable
independently of the alias.
This means that we can join with the actual destination interval instead of
using the getOrigDstReg() hack. It is no longer necessary to merge clobber
ranges into subregisters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107695 91177308-0d34-0410-b5e6-96231b3b80d8
the example in the testcase, we now generate:
_test1: ## @test1
movss 4(%esp), %xmm0
addss 8(%esp), %xmm0
movl 12(%esp), %eax
movss %xmm0, (%eax)
ret
instead of:
_test1: ## @test1
subl $20, %esp
movl 24(%esp), %eax
movq %mm0, (%esp)
movq %mm0, 8(%esp)
movss (%esp), %xmm0
addss 12(%esp), %xmm0
movss %xmm0, (%eax)
addl $20, %esp
ret
v2f32 support did not work reliably because most of the X86
backend didn't know it was legal. It was apparently only added
to support returning source-level v2f32 values in MMX registers
in x86-32 mode. If ABI compatibility is important on this
GCC-extended-vector type for some reason, then the frontend
should generate IR that returns v2i32 instead of v2f32. However,
we generally don't try very hard to be abi compatible on gcc
extended vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107601 91177308-0d34-0410-b5e6-96231b3b80d8
v2f32 as legal in 32-bit mode. It is just as terrible there,
but I just care about x86-64 and noone claims it is valuable
in 64-bit mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107600 91177308-0d34-0410-b5e6-96231b3b80d8
- X86 unfolding should check if the instructions being unfolded has memoperands.
If there is no memoperands, then it must assume conservative alignment. If this
would introduce an expensive sse unaligned load / store, then unfoldMemoryOperand
etc. should not unfold the instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107509 91177308-0d34-0410-b5e6-96231b3b80d8
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107506 91177308-0d34-0410-b5e6-96231b3b80d8
Objective-C metadata types which should be marked as "weak", but which the
linker will remove upon final linkage. However, this linkage isn't specific to
Objective-C.
For example, the "objc_msgSend_fixup_alloc" symbol is defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
Currently only supported on Darwin platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107433 91177308-0d34-0410-b5e6-96231b3b80d8
available in a register. This is pretty primitive, but it reduces the
number of instructions in common testcases by 4%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107380 91177308-0d34-0410-b5e6-96231b3b80d8