Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169837 91177308-0d34-0410-b5e6-96231b3b80d8
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169791 91177308-0d34-0410-b5e6-96231b3b80d8
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169536 91177308-0d34-0410-b5e6-96231b3b80d8
AKA: Recompile *ALL* the source code!
This one went much better. No manual edits here. I spot-checked for
silliness and grep-checked for really broken edits and everything seemed
good. It all still compiles. Yell if you see something that looks goofy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
For some targets, it is desirable to prefer scalarizing <N x i1> instead of promoting to a larger legal type, such as <N x i32>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168882 91177308-0d34-0410-b5e6-96231b3b80d8
Add getCostXXX calls for different families of opcodes, such as casts, arithmetic, cmp, etc.
Port the LoopVectorizer to the new API.
The LoopVectorizer now finds instructions which will remain uniform after vectorization. It uses this information when calculating the cost of these instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166836 91177308-0d34-0410-b5e6-96231b3b80d8
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166018 91177308-0d34-0410-b5e6-96231b3b80d8
The next step is to update the optimizers to allow them to optimize the different address spaces with this information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165505 91177308-0d34-0410-b5e6-96231b3b80d8
This class is used by LSR and a number of places in the codegen.
This is the first step in de-coupling LSR from TLI, and creating
a new interface in between them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165455 91177308-0d34-0410-b5e6-96231b3b80d8
Provide interface in TargetLowering to set or get the minimum number of basic
blocks whereby jump tables are generated for switch statements rather than an
if sequence.
getMinimumJumpTableEntries() defaults to 4.
setMinimumJumpTableEntries() allows target configuration.
This patch changes the default for the Hexagon architecture to 5
as it improves performance on some benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164628 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8
For example, the ARM target does not have efficient ISel handling for vector
selects with scalar conditions. This patch adds a TLI hook which allows the
different targets to report which selects are supported well and which selects
should be converted to CF duting codegen prepare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163093 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161232 91177308-0d34-0410-b5e6-96231b3b80d8
expression (a * b + c) that can be implemented as a fused multiply-add (fma)
if the target determines that this will be more efficient. This intrinsic
will be used to implement FP_CONTRACT support and an aggressive FMA formation
mode.
If your target has a fast FMA instruction you should override the
isFMAFasterThanMulAndAdd method in TargetLowering to return true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158014 91177308-0d34-0410-b5e6-96231b3b80d8
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157479 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156233 91177308-0d34-0410-b5e6-96231b3b80d8
The masks returned by SuperRegClassIterator are computed automatically
by TableGen. This is better than depending on the manually specified
SuperRegClasses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156147 91177308-0d34-0410-b5e6-96231b3b80d8
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154370 91177308-0d34-0410-b5e6-96231b3b80d8
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154292 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151623 91177308-0d34-0410-b5e6-96231b3b80d8
This new scheduler plugs into the existing selection DAG scheduling framework. It is a top-down critical path scheduler that tracks register pressure and uses a DFA for pipeline modeling.
Patch by Sergei Larin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149547 91177308-0d34-0410-b5e6-96231b3b80d8
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147861 91177308-0d34-0410-b5e6-96231b3b80d8
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139159 91177308-0d34-0410-b5e6-96231b3b80d8
Add a instruction flag: hasPostISelHook which tells the pre-RA scheduler to
call a target hook to adjust the instruction. For ARM, this is used to
adjust instructions which may be setting the 's' flag. ADC, SBC, RSB, and RSC
instructions have implicit def of CPSR (required since it now uses CPSR physical
register dependency rather than "glue"). If the carry flag is used, then the
target hook will *fill in* the optional operand with CPSR. Otherwise, the hook
will remove the CPSR implicit def from the MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138810 91177308-0d34-0410-b5e6-96231b3b80d8
We have to do this in DAGBuilder instead of DAGCombiner, because the exact bit is lost after building.
struct foo { char x[24]; };
long bar(struct foo *a, struct foo *b) { return a-b; }
is now compiled into
movl 4(%esp), %eax
subl 8(%esp), %eax
sarl $3, %eax
imull $-1431655765, %eax, %eax
instead of
movl 4(%esp), %eax
subl 8(%esp), %eax
movl $715827883, %ecx
imull %ecx
movl %edx, %eax
shrl $31, %eax
sarl $2, %edx
addl %eax, %edx
movl %edx, %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134695 91177308-0d34-0410-b5e6-96231b3b80d8
patch we add a flag to enable a new type legalization decision - to promote
integer elements in vectors. Currently, the rest of the codegen does not support
this kind of legalization. This flag will be removed when the transition is
complete.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132394 91177308-0d34-0410-b5e6-96231b3b80d8
This patch does not change the behavior of the type legalizer. The codegen
produces the same code.
This infrastructural change is needed in order to enable complex decisions
for vector types (needed by the vector-select patch).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132263 91177308-0d34-0410-b5e6-96231b3b80d8
Original log entry:
Refactor getActionType and getTypeToTransformTo ; place all of the 'decision'
code in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131536 91177308-0d34-0410-b5e6-96231b3b80d8
model constants which can be added to base registers via add-immediate
instructions which don't require an additional register to materialize
the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130743 91177308-0d34-0410-b5e6-96231b3b80d8
transformations in target-specific DAG combines without causing DAGCombiner to
delete the same node twice. If you know of a better way to avoid this (see my
next patch for an example), please let me know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128758 91177308-0d34-0410-b5e6-96231b3b80d8
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127953 91177308-0d34-0410-b5e6-96231b3b80d8
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127766 91177308-0d34-0410-b5e6-96231b3b80d8
the load, then it may be legal to transform the load and store to integer
load and store of the same width.
This is done if the target specified the transformation as profitable. e.g.
On arm, this can transform:
vldr.32 s0, []
vstr.32 s0, []
to
ldr r12, []
str r12, []
rdar://8944252
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124708 91177308-0d34-0410-b5e6-96231b3b80d8
etc. takes an option OptSize. If OptSize is true, it would return
the inline limit for functions with attribute OptSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122952 91177308-0d34-0410-b5e6-96231b3b80d8
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120501 91177308-0d34-0410-b5e6-96231b3b80d8
with a SimpleValueType, while an EVT supports equality and
inequality comparisons with SimpleValueType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118169 91177308-0d34-0410-b5e6-96231b3b80d8
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112101 91177308-0d34-0410-b5e6-96231b3b80d8
it's too late to start backing off aggressive latency scheduling when most
of the registers are in use so the threshold should be a bit tighter.
- Correctly handle live out's and extract_subreg etc.
- Enable register pressure aware scheduling by default for hybrid scheduler.
For ARM, this is almost always a win on # of instructions. It's runtime
neutral for most of the tests. But for some kernels with high register
pressure it can be a huge win. e.g. 464.h264ref reduced number of spills by
54 and sped up by 20%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109279 91177308-0d34-0410-b5e6-96231b3b80d8
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108072 91177308-0d34-0410-b5e6-96231b3b80d8
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108039 91177308-0d34-0410-b5e6-96231b3b80d8
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107987 91177308-0d34-0410-b5e6-96231b3b80d8
instance, rather than pointers to all of FunctionLoweringInfo's
members.
This eliminates an NDEBUG ABI sensitivity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107789 91177308-0d34-0410-b5e6-96231b3b80d8
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106893 91177308-0d34-0410-b5e6-96231b3b80d8
atomic intrinsics, either because the use locking instructions for the
atomics, or because they perform the locking directly. Add support in the
DAG combiner to fold away the fences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106630 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to override it in order to map register classes to illegal
but synthesizable types. e.g. v4i64, v8i64 for ARM / NEON.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103854 91177308-0d34-0410-b5e6-96231b3b80d8