- ir: the @split arrays are currently also split in _lsb/_msb arrays in the IR, and operations take multiple (byte) instructions that may lead to verbose and slow operation and machine code generation down the line.
- IR: reduce the number of branch instructions such as BEQ, BEQR, etc (gradually), replace with CMP(I) + status branch instruction
- IR: reduce amount of CMP/CMPI after instructions that set the status bits correctly (LOADs? INC? etc), but only after setting the status bits is verified!
- ir: idea: (but LLVM IR simply keeps the variables, so not a good idea then?...): replace all scalar variables by an allocated register. Keep a table of the variable to register mapping (including the datatype)
- ir: for expressions with array indexes that occur multiple times, can we avoid loading them into new virtualregs everytime and just reuse a single virtualreg as indexer? (simple form of common subexpression elimination)
- PtAst/IR: more complex common subexpression eliminations
Perhaps replace all uses of .proc/.pend/.endproc by .block/.bend will fix that with a compiler flag?
But all library code written in asm uses .proc already..... (textual search/replace when writing the actual asm?)
Once new codegen is written that is based on the IR, this point is mostly moot anyway as that will have its own dead code removal on the IR level.
- Zig-like try-based error handling where the V flag could indicate error condition? and/or BRK to jump into monitor on failure? (has to set BRK vector for that) But the V flag is also set on certain normal instructions