2005-01-07 07:44:53 +00:00
|
|
|
//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
|
2005-04-21 22:55:34 +00:00
|
|
|
//
|
2005-01-07 07:44:53 +00:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
2005-04-21 22:55:34 +00:00
|
|
|
//
|
2005-01-07 07:44:53 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This implements the TargetLowering class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
2006-01-26 20:37:03 +00:00
|
|
|
#include "llvm/Target/MRegisterInfo.h"
|
2005-01-07 07:44:53 +00:00
|
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
2006-01-26 20:37:03 +00:00
|
|
|
#include "llvm/ADT/StringExtras.h"
|
2006-01-30 04:09:27 +00:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
2005-01-07 07:44:53 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
TargetLowering::TargetLowering(TargetMachine &tm)
|
2006-01-29 08:41:12 +00:00
|
|
|
: TM(tm), TD(TM.getTargetData()) {
|
2005-01-07 07:44:53 +00:00
|
|
|
assert(ISD::BUILTIN_OP_END <= 128 &&
|
|
|
|
"Fixed size array in TargetLowering is not large enough!");
|
2005-01-16 07:28:11 +00:00
|
|
|
// All operations default to being supported.
|
|
|
|
memset(OpActions, 0, sizeof(OpActions));
|
2005-01-07 07:44:53 +00:00
|
|
|
|
|
|
|
IsLittleEndian = TD.isLittleEndian();
|
2005-01-16 23:59:48 +00:00
|
|
|
ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
|
2005-01-19 03:36:14 +00:00
|
|
|
ShiftAmtHandling = Undefined;
|
2005-01-07 07:44:53 +00:00
|
|
|
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
|
2006-03-01 04:52:55 +00:00
|
|
|
memset(TargetDAGCombineArray, 0,
|
|
|
|
sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
|
2006-02-14 08:38:30 +00:00
|
|
|
maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
|
2005-08-27 19:09:02 +00:00
|
|
|
allowUnalignedMemoryAccesses = false;
|
2005-09-27 22:13:56 +00:00
|
|
|
UseUnderscoreSetJmpLongJmp = false;
|
2005-10-21 00:02:42 +00:00
|
|
|
IntDivIsCheap = false;
|
|
|
|
Pow2DivIsCheap = false;
|
2006-01-25 18:57:15 +00:00
|
|
|
StackPointerRegisterToSaveRestore = 0;
|
2006-01-25 18:52:42 +00:00
|
|
|
SchedPreferenceInfo = SchedulingForLatency;
|
2005-01-07 07:44:53 +00:00
|
|
|
}
|
|
|
|
|
2005-01-16 07:28:11 +00:00
|
|
|
TargetLowering::~TargetLowering() {}
|
|
|
|
|
2005-01-16 01:10:58 +00:00
|
|
|
/// setValueTypeAction - Set the action for a particular value type. This
|
|
|
|
/// assumes an action has not already been set for this value type.
|
2005-01-16 07:28:11 +00:00
|
|
|
static void SetValueTypeAction(MVT::ValueType VT,
|
|
|
|
TargetLowering::LegalizeAction Action,
|
2005-01-16 01:10:58 +00:00
|
|
|
TargetLowering &TLI,
|
|
|
|
MVT::ValueType *TransformToType,
|
2006-01-29 08:41:12 +00:00
|
|
|
TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
|
|
|
|
ValueTypeActions.setTypeAction(VT, Action);
|
2005-01-16 07:28:11 +00:00
|
|
|
if (Action == TargetLowering::Promote) {
|
2005-01-16 01:10:58 +00:00
|
|
|
MVT::ValueType PromoteTo;
|
|
|
|
if (VT == MVT::f32)
|
|
|
|
PromoteTo = MVT::f64;
|
|
|
|
else {
|
|
|
|
unsigned LargerReg = VT+1;
|
2005-08-24 16:34:12 +00:00
|
|
|
while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
|
2005-01-16 01:10:58 +00:00
|
|
|
++LargerReg;
|
|
|
|
assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
|
|
|
|
"Nothing to promote to??");
|
|
|
|
}
|
|
|
|
PromoteTo = (MVT::ValueType)LargerReg;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
|
|
|
|
MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
|
|
|
|
"Can only promote from int->int or fp->fp!");
|
|
|
|
assert(VT < PromoteTo && "Must promote to a larger type!");
|
|
|
|
TransformToType[VT] = PromoteTo;
|
2005-01-16 07:28:11 +00:00
|
|
|
} else if (Action == TargetLowering::Expand) {
|
2005-11-22 01:29:36 +00:00
|
|
|
assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
|
2005-01-16 01:10:58 +00:00
|
|
|
"Cannot expand this type: target must support SOME integer reg!");
|
|
|
|
// Expand to the next smaller integer type!
|
|
|
|
TransformToType[VT] = (MVT::ValueType)(VT-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-01-07 07:44:53 +00:00
|
|
|
/// computeRegisterProperties - Once all of the register classes are added,
|
|
|
|
/// this allows us to compute derived properties we expose.
|
|
|
|
void TargetLowering::computeRegisterProperties() {
|
2005-11-29 05:45:29 +00:00
|
|
|
assert(MVT::LAST_VALUETYPE <= 32 &&
|
2005-01-16 01:10:58 +00:00
|
|
|
"Too many value types for ValueTypeActions to hold!");
|
|
|
|
|
2005-01-07 07:44:53 +00:00
|
|
|
// Everything defaults to one.
|
|
|
|
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
|
|
|
|
NumElementsForVT[i] = 1;
|
2005-04-21 22:55:34 +00:00
|
|
|
|
2005-01-07 07:44:53 +00:00
|
|
|
// Find the largest integer register class.
|
|
|
|
unsigned LargestIntReg = MVT::i128;
|
|
|
|
for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
|
|
|
|
assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
|
|
|
|
|
|
|
|
// Every integer value type larger than this largest register takes twice as
|
|
|
|
// many registers to represent as the previous ValueType.
|
|
|
|
unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
|
|
|
|
for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
|
|
|
|
NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
|
|
|
|
|
2005-01-16 01:10:58 +00:00
|
|
|
// Inspect all of the ValueType's possible, deciding how to process them.
|
|
|
|
for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
|
|
|
|
// If we are expanding this type, expand it!
|
|
|
|
if (getNumElements((MVT::ValueType)IntReg) != 1)
|
2005-01-16 07:28:11 +00:00
|
|
|
SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
|
2005-01-16 01:10:58 +00:00
|
|
|
ValueTypeActions);
|
2005-08-24 16:34:12 +00:00
|
|
|
else if (!isTypeLegal((MVT::ValueType)IntReg))
|
2005-01-16 01:10:58 +00:00
|
|
|
// Otherwise, if we don't have native support, we must promote to a
|
|
|
|
// larger type.
|
2005-01-16 07:28:11 +00:00
|
|
|
SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
|
|
|
|
TransformToType, ValueTypeActions);
|
2005-01-16 01:20:18 +00:00
|
|
|
else
|
|
|
|
TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
|
2005-04-21 22:55:34 +00:00
|
|
|
|
2005-01-16 01:10:58 +00:00
|
|
|
// If the target does not have native support for F32, promote it to F64.
|
2005-08-24 16:34:12 +00:00
|
|
|
if (!isTypeLegal(MVT::f32))
|
2005-01-16 07:28:11 +00:00
|
|
|
SetValueTypeAction(MVT::f32, Promote, *this,
|
|
|
|
TransformToType, ValueTypeActions);
|
2005-01-16 01:20:18 +00:00
|
|
|
else
|
|
|
|
TransformToType[MVT::f32] = MVT::f32;
|
2005-11-22 01:29:36 +00:00
|
|
|
|
|
|
|
// Set MVT::Vector to always be Expanded
|
|
|
|
SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
|
|
|
|
ValueTypeActions);
|
2005-01-16 01:20:18 +00:00
|
|
|
|
2005-08-24 16:34:12 +00:00
|
|
|
assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
|
2005-01-16 01:20:18 +00:00
|
|
|
TransformToType[MVT::f64] = MVT::f64;
|
2005-01-16 01:10:58 +00:00
|
|
|
}
|
2005-01-16 07:28:11 +00:00
|
|
|
|
2005-12-20 06:22:03 +00:00
|
|
|
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
|
|
return NULL;
|
|
|
|
}
|
2005-12-21 23:05:39 +00:00
|
|
|
|
2006-02-04 02:13:02 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Optimization Methods
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
/// ShrinkDemandedConstant - Check to see if the specified operand of the
|
|
|
|
/// specified instruction is a constant integer. If so, check to see if there
|
|
|
|
/// are any bits set in the constant that are not demanded. If so, shrink the
|
|
|
|
/// constant and return true.
|
|
|
|
bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
|
|
|
|
uint64_t Demanded) {
|
2006-02-26 23:36:02 +00:00
|
|
|
// FIXME: ISD::SELECT, ISD::SELECT_CC
|
2006-02-16 21:11:51 +00:00
|
|
|
switch(Op.getOpcode()) {
|
|
|
|
default: break;
|
|
|
|
case ISD::AND:
|
|
|
|
case ISD::OR:
|
|
|
|
case ISD::XOR:
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
|
|
if ((~Demanded & C->getValue()) != 0) {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
|
|
|
|
DAG.getConstant(Demanded & C->getValue(),
|
|
|
|
VT));
|
|
|
|
return CombineTo(Op, New);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
|
|
|
|
/// DemandedMask bits of the result of Op are ever used downstream. If we can
|
|
|
|
/// use this information to simplify Op, create a new simplified DAG node and
|
|
|
|
/// return true, returning the original and new nodes in Old and New. Otherwise,
|
|
|
|
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
|
|
|
|
/// the expression (used to simplify the caller). The KnownZero/One bits may
|
|
|
|
/// only be accurate for those bits in the DemandedMask.
|
|
|
|
bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
|
|
|
|
uint64_t &KnownZero,
|
|
|
|
uint64_t &KnownOne,
|
|
|
|
TargetLoweringOpt &TLO,
|
|
|
|
unsigned Depth) const {
|
|
|
|
KnownZero = KnownOne = 0; // Don't know anything.
|
|
|
|
// Other users may use these bits.
|
|
|
|
if (!Op.Val->hasOneUse()) {
|
|
|
|
if (Depth != 0) {
|
|
|
|
// If not at the root, Just compute the KnownZero/KnownOne bits to
|
|
|
|
// simplify things downstream.
|
|
|
|
ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// If this is the root being simplified, allow it to have multiple uses,
|
|
|
|
// just set the DemandedMask to all bits.
|
|
|
|
DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
|
|
|
|
} else if (DemandedMask == 0) {
|
|
|
|
// Not demanding any bits from Op.
|
|
|
|
if (Op.getOpcode() != ISD::UNDEF)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
|
2006-02-03 22:24:05 +00:00
|
|
|
return false;
|
2006-02-16 21:11:51 +00:00
|
|
|
} else if (Depth == 6) { // Limit search depth.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
|
2006-02-03 22:24:05 +00:00
|
|
|
switch (Op.getOpcode()) {
|
2006-02-16 21:11:51 +00:00
|
|
|
case ISD::Constant:
|
|
|
|
// We know all of the bits for a constant!
|
|
|
|
KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
|
|
|
|
KnownZero = ~KnownOne & DemandedMask;
|
2006-02-26 23:36:02 +00:00
|
|
|
return false; // Don't fall through, will infinitely loop.
|
2006-02-03 22:24:05 +00:00
|
|
|
case ISD::AND:
|
2006-02-27 00:36:27 +00:00
|
|
|
// If the RHS is a constant, check to see if the LHS would be zero without
|
|
|
|
// using the bits from the RHS. Below, we use knowledge about the RHS to
|
|
|
|
// simplify the LHS, here we're using information from the LHS to simplify
|
|
|
|
// the RHS.
|
|
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
uint64_t LHSZero, LHSOne;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), DemandedMask,
|
|
|
|
LHSZero, LHSOne, Depth+1);
|
|
|
|
// If the LHS already has zeros where RHSC does, this and is dead.
|
|
|
|
if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
|
|
// If any of the set bits in the RHS are known zero on the LHS, shrink
|
|
|
|
// the constant.
|
|
|
|
if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
|
|
|
|
KnownZero2, KnownOne2, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If all of the demanded bits are known one on one side, return the other.
|
|
|
|
// These bits cannot contribute to the result of the 'and'.
|
|
|
|
if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
|
|
if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
|
|
// If all of the demanded bits in the inputs are known zeros, return zero.
|
|
|
|
if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
|
|
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
|
|
|
|
return true;
|
Just like we use the RHS of an AND to simplify the LHS, use the LHS to
simplify the RHS. This allows for the elimination of many thousands of
ands from multisource, and compiles CodeGen/PowerPC/and-elim.ll:test2
into this:
_test2:
srwi r2, r3, 1
xori r3, r2, 40961
blr
instead of this:
_test2:
rlwinm r2, r3, 31, 17, 31
xori r2, r2, 40961
rlwinm r3, r2, 0, 16, 31
blr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26388 91177308-0d34-0410-b5e6-96231b3b80d8
2006-02-27 00:22:28 +00:00
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
|
|
KnownOne &= KnownOne2;
|
|
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
|
|
KnownZero |= KnownZero2;
|
|
|
|
break;
|
|
|
|
case ISD::OR:
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
|
|
|
|
KnownZero2, KnownOne2, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If all of the demanded bits are known zero on one side, return the other.
|
|
|
|
// These bits cannot contribute to the result of the 'or'.
|
2006-02-17 02:12:18 +00:00
|
|
|
if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
|
2006-02-16 21:11:51 +00:00
|
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
2006-02-17 02:12:18 +00:00
|
|
|
if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
|
2006-02-16 21:11:51 +00:00
|
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
|
|
// If all of the potentially set bits on one side are known to be set on
|
|
|
|
// the other side, just use the 'other' side.
|
|
|
|
if ((DemandedMask & (~KnownZero) & KnownOne2) ==
|
|
|
|
(DemandedMask & (~KnownZero)))
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
|
|
if ((DemandedMask & (~KnownZero2) & KnownOne) ==
|
|
|
|
(DemandedMask & (~KnownZero2)))
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
|
|
KnownZero &= KnownZero2;
|
|
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
|
|
KnownOne |= KnownOne2;
|
|
|
|
break;
|
|
|
|
case ISD::XOR:
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
|
|
|
|
KnownOne2, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If all of the demanded bits are known zero on one side, return the other.
|
|
|
|
// These bits cannot contribute to the result of the 'xor'.
|
|
|
|
if ((DemandedMask & KnownZero) == DemandedMask)
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
|
|
if ((DemandedMask & KnownZero2) == DemandedMask)
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
|
|
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
|
|
KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
|
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
|
|
KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
|
|
|
|
|
|
|
// If all of the unknown bits are known to be zero on one side or the other
|
|
|
|
// (but not both) turn this into an *inclusive* or.
|
|
|
|
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
|
|
|
|
if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
|
|
|
|
if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
|
|
|
|
Op.getOperand(0),
|
|
|
|
Op.getOperand(1)));
|
|
|
|
// If all of the demanded bits on one side are known, and all of the set
|
|
|
|
// bits on that side are also known to be set on the other side, turn this
|
|
|
|
// into an AND, as we know the bits will be cleared.
|
|
|
|
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
|
|
|
|
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
|
|
|
|
if ((KnownOne & KnownOne2) == KnownOne) {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
|
|
|
|
ANDC));
|
|
|
|
}
|
2006-02-03 22:24:05 +00:00
|
|
|
}
|
2006-02-16 21:11:51 +00:00
|
|
|
|
|
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
|
|
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
|
|
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
KnownZero = KnownZeroOut;
|
|
|
|
KnownOne = KnownOneOut;
|
|
|
|
break;
|
|
|
|
case ISD::SETCC:
|
|
|
|
// If we know the result of a setcc has the top bits zero, use this info.
|
|
|
|
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
|
|
|
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
|
|
|
break;
|
|
|
|
case ISD::SELECT:
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
|
|
|
|
KnownOne2, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If the operands are constants, see if we can simplify them.
|
|
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
|
|
return true;
|
|
|
|
|
2006-02-26 23:36:02 +00:00
|
|
|
// Only known if known in both the LHS and RHS.
|
|
|
|
KnownOne &= KnownOne2;
|
|
|
|
KnownZero &= KnownZero2;
|
|
|
|
break;
|
|
|
|
case ISD::SELECT_CC:
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
|
|
|
|
KnownOne2, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If the operands are constants, see if we can simplify them.
|
|
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
|
|
return true;
|
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
// Only known if known in both the LHS and RHS.
|
|
|
|
KnownOne &= KnownOne2;
|
|
|
|
KnownZero &= KnownZero2;
|
2006-02-03 22:24:05 +00:00
|
|
|
break;
|
|
|
|
case ISD::SHL:
|
2006-02-16 21:11:51 +00:00
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
KnownZero <<= SA->getValue();
|
|
|
|
KnownOne <<= SA->getValue();
|
|
|
|
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ISD::SRL:
|
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
|
|
|
|
// Compute the new bits that are at the top now.
|
|
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
|
|
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
|
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
|
|
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0),
|
|
|
|
(DemandedMask << ShAmt) & TypeMask,
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
KnownZero &= TypeMask;
|
|
|
|
KnownOne &= TypeMask;
|
|
|
|
KnownZero >>= ShAmt;
|
|
|
|
KnownOne >>= ShAmt;
|
|
|
|
KnownZero |= HighBits; // high bits known zero.
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ISD::SRA:
|
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
|
|
|
|
// Compute the new bits that are at the top now.
|
|
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
|
|
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
|
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
|
|
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0),
|
|
|
|
(DemandedMask << ShAmt) & TypeMask,
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
KnownZero &= TypeMask;
|
|
|
|
KnownOne &= TypeMask;
|
|
|
|
KnownZero >>= SA->getValue();
|
|
|
|
KnownOne >>= SA->getValue();
|
|
|
|
|
|
|
|
// Handle the sign bits.
|
|
|
|
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
|
|
|
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
|
|
|
|
|
|
|
|
// If the input sign bit is known to be zero, or if none of the top bits
|
|
|
|
// are demanded, turn this into an unsigned shift right.
|
|
|
|
if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
|
|
|
|
Op.getOperand(1)));
|
|
|
|
} else if (KnownOne & SignBit) { // New bits are known one.
|
|
|
|
KnownOne |= HighBits;
|
|
|
|
}
|
2006-02-03 22:24:05 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ISD::SIGN_EXTEND_INREG: {
|
2006-02-16 21:11:51 +00:00
|
|
|
MVT::ValueType VT = Op.getValueType();
|
2006-02-03 22:24:05 +00:00
|
|
|
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
2006-02-16 21:11:51 +00:00
|
|
|
|
2006-02-26 23:36:02 +00:00
|
|
|
// Sign extension. Compute the demanded bits in the result that are not
|
2006-02-16 21:11:51 +00:00
|
|
|
// present in the input.
|
2006-02-26 23:36:02 +00:00
|
|
|
uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
|
2006-02-16 21:11:51 +00:00
|
|
|
|
2006-02-26 23:36:02 +00:00
|
|
|
// If none of the extended bits are demanded, eliminate the sextinreg.
|
|
|
|
if (NewBits == 0)
|
|
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
|
|
|
|
int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
|
|
|
|
|
2006-02-26 23:36:02 +00:00
|
|
|
// Since the sign extended bits are demanded, we know that the sign
|
2006-02-16 21:11:51 +00:00
|
|
|
// bit is demanded.
|
2006-02-26 23:36:02 +00:00
|
|
|
InputDemandedBits |= InSignBit;
|
2006-02-16 21:11:51 +00:00
|
|
|
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
2006-02-03 22:24:05 +00:00
|
|
|
return true;
|
2006-02-16 21:11:51 +00:00
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
|
|
// top bits of the result.
|
|
|
|
|
2006-02-26 23:36:02 +00:00
|
|
|
// If the input sign bit is known zero, convert this into a zero extension.
|
|
|
|
if (KnownZero & InSignBit)
|
|
|
|
return TLO.CombineTo(Op,
|
|
|
|
TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
|
|
|
|
|
|
|
|
if (KnownOne & InSignBit) { // Input sign bit known set
|
2006-02-16 21:11:51 +00:00
|
|
|
KnownOne |= NewBits;
|
|
|
|
KnownZero &= ~NewBits;
|
2006-02-26 23:36:02 +00:00
|
|
|
} else { // Input sign bit unknown
|
2006-02-16 21:11:51 +00:00
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
KnownOne &= ~NewBits;
|
2006-02-03 22:24:05 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2006-02-26 23:36:02 +00:00
|
|
|
case ISD::CTTZ:
|
|
|
|
case ISD::CTLZ:
|
|
|
|
case ISD::CTPOP: {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
|
|
|
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
|
|
|
KnownOne = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ISD::ZEXTLOAD: {
|
|
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
|
|
|
|
KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ISD::ZERO_EXTEND: {
|
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
|
|
|
|
|
|
// If none of the top bits are demanded, convert this into an any_extend.
|
|
|
|
uint64_t NewBits = (~InMask) & DemandedMask;
|
|
|
|
if (NewBits == 0)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
|
|
|
|
Op.getValueType(),
|
|
|
|
Op.getOperand(0)));
|
|
|
|
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
KnownZero |= NewBits;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND: {
|
|
|
|
MVT::ValueType InVT = Op.getOperand(0).getValueType();
|
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(InVT);
|
|
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
|
|
|
|
uint64_t NewBits = (~InMask) & DemandedMask;
|
|
|
|
|
|
|
|
// If none of the top bits are demanded, convert this into an any_extend.
|
|
|
|
if (NewBits == 0)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
|
|
|
|
Op.getOperand(0)));
|
|
|
|
|
|
|
|
// Since some of the sign extended bits are demanded, we know that the sign
|
|
|
|
// bit is demanded.
|
|
|
|
uint64_t InDemandedBits = DemandedMask & InMask;
|
|
|
|
InDemandedBits |= InSignBit;
|
|
|
|
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// If the sign bit is known zero, convert this to a zero extend.
|
|
|
|
if (KnownZero & InSignBit)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
|
|
|
|
Op.getValueType(),
|
|
|
|
Op.getOperand(0)));
|
|
|
|
|
|
|
|
// If the sign bit is known one, the top bits match.
|
|
|
|
if (KnownOne & InSignBit) {
|
|
|
|
KnownOne |= NewBits;
|
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
} else { // Otherwise, top bits aren't known.
|
|
|
|
KnownOne &= ~NewBits;
|
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ISD::ANY_EXTEND: {
|
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ISD::AssertZext: {
|
|
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(VT);
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
|
|
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
|
|
return true;
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
KnownZero |= ~InMask & DemandedMask;
|
|
|
|
break;
|
|
|
|
}
|
2006-02-16 21:11:51 +00:00
|
|
|
case ISD::ADD:
|
|
|
|
if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero,
|
|
|
|
KnownOne, TLO, Depth+1))
|
2006-02-03 22:24:05 +00:00
|
|
|
return true;
|
2006-02-16 21:11:51 +00:00
|
|
|
// Compute the KnownOne/KnownZero masks for the constant, so we can set
|
|
|
|
// KnownZero appropriately if we're adding a constant that has all low
|
|
|
|
// bits cleared.
|
|
|
|
ComputeMaskedBits(Op.getOperand(1),
|
|
|
|
MVT::getIntVTBitMask(Op.getValueType()),
|
|
|
|
KnownZero2, KnownOne2, Depth+1);
|
|
|
|
|
|
|
|
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
|
|
|
|
CountTrailingZeros_64(~KnownZero2));
|
|
|
|
KnownZero = (1ULL << KnownZeroOut) - 1;
|
|
|
|
KnownOne = 0;
|
2006-02-18 02:43:25 +00:00
|
|
|
|
|
|
|
SDOperand SH = Op.getOperand(0);
|
|
|
|
// fold (add (shl x, c1), (shl c2, c1)) -> (shl (add x, c2), c1)
|
|
|
|
if (KnownZero && SH.getOpcode() == ISD::SHL && SH.Val->hasOneUse() &&
|
|
|
|
Op.Val->hasOneUse()) {
|
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(SH.getOperand(1))) {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
unsigned ShiftAmt = SA->getValue();
|
|
|
|
uint64_t AddAmt = AA->getValue();
|
|
|
|
uint64_t AddShr = AddAmt >> ShiftAmt;
|
|
|
|
if (AddAmt == (AddShr << ShiftAmt)) {
|
|
|
|
SDOperand ADD = TLO.DAG.getNode(ISD::ADD, VT, SH.getOperand(0),
|
|
|
|
TLO.DAG.getConstant(AddShr, VT));
|
|
|
|
SDOperand SHL = TLO.DAG.getNode(ISD::SHL, VT, ADD,SH.getOperand(1));
|
|
|
|
return TLO.CombineTo(Op, SHL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-02-03 22:24:05 +00:00
|
|
|
}
|
|
|
|
break;
|
2006-02-27 01:00:42 +00:00
|
|
|
case ISD::SUB:
|
|
|
|
// Just use ComputeMaskedBits to compute output bits, there are no
|
|
|
|
// simplifications that can be done here, and sub always demands all input
|
|
|
|
// bits.
|
|
|
|
ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
|
|
|
|
break;
|
2006-02-03 22:24:05 +00:00
|
|
|
}
|
2006-02-26 23:36:02 +00:00
|
|
|
|
|
|
|
// If we know the value of all of the demanded bits, return this as a
|
|
|
|
// constant.
|
|
|
|
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
|
|
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
|
|
|
|
|
2006-02-03 22:24:05 +00:00
|
|
|
return false;
|
|
|
|
}
|
2006-01-30 04:09:27 +00:00
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
|
|
|
/// this predicate to simplify operations downstream. Mask is known to be zero
|
|
|
|
/// for bits that V cannot have.
|
|
|
|
bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
|
|
|
|
unsigned Depth) const {
|
|
|
|
uint64_t KnownZero, KnownOne;
|
|
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
return (KnownZero & Mask) == Mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
|
|
|
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
|
|
|
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
|
|
|
|
/// processing.
|
|
|
|
void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
|
|
|
|
uint64_t &KnownZero, uint64_t &KnownOne,
|
|
|
|
unsigned Depth) const {
|
|
|
|
KnownZero = KnownOne = 0; // Don't know anything.
|
|
|
|
if (Depth == 6 || Mask == 0)
|
|
|
|
return; // Limit search depth.
|
2006-01-30 04:09:27 +00:00
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
uint64_t KnownZero2, KnownOne2;
|
|
|
|
|
2006-01-30 04:09:27 +00:00
|
|
|
switch (Op.getOpcode()) {
|
|
|
|
case ISD::Constant:
|
2006-02-16 21:11:51 +00:00
|
|
|
// We know all of the bits for a constant!
|
|
|
|
KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
|
|
|
|
KnownZero = ~KnownOne & Mask;
|
|
|
|
return;
|
2006-01-30 04:09:27 +00:00
|
|
|
case ISD::AND:
|
2006-02-16 21:11:51 +00:00
|
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
Mask &= ~KnownZero;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
|
|
KnownOne &= KnownOne2;
|
|
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
|
|
KnownZero |= KnownZero2;
|
|
|
|
return;
|
2006-01-30 04:09:27 +00:00
|
|
|
case ISD::OR:
|
2006-02-16 21:11:51 +00:00
|
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
Mask &= ~KnownOne;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
|
|
KnownZero &= KnownZero2;
|
|
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
|
|
KnownOne |= KnownOne2;
|
|
|
|
return;
|
|
|
|
case ISD::XOR: {
|
|
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
|
|
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
|
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
|
|
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
|
|
|
KnownZero = KnownZeroOut;
|
|
|
|
return;
|
|
|
|
}
|
2006-01-30 04:09:27 +00:00
|
|
|
case ISD::SELECT:
|
2006-02-16 21:11:51 +00:00
|
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
|
|
KnownOne &= KnownOne2;
|
|
|
|
KnownZero &= KnownZero2;
|
|
|
|
return;
|
2006-01-30 04:09:27 +00:00
|
|
|
case ISD::SELECT_CC:
|
2006-02-16 21:11:51 +00:00
|
|
|
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
|
|
KnownOne &= KnownOne2;
|
|
|
|
KnownZero &= KnownZero2;
|
|
|
|
return;
|
|
|
|
case ISD::SETCC:
|
|
|
|
// If we know the result of a setcc has the top bits zero, use this info.
|
|
|
|
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
|
|
|
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
|
|
|
return;
|
2006-01-30 04:09:27 +00:00
|
|
|
case ISD::SHL:
|
2006-02-16 21:11:51 +00:00
|
|
|
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
|
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
Mask >>= SA->getValue();
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
KnownZero <<= SA->getValue();
|
|
|
|
KnownOne <<= SA->getValue();
|
|
|
|
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
2006-01-30 04:09:27 +00:00
|
|
|
}
|
2006-02-18 02:43:25 +00:00
|
|
|
return;
|
2006-02-16 21:11:51 +00:00
|
|
|
case ISD::SRL:
|
|
|
|
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
|
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
uint64_t HighBits = (1ULL << SA->getValue())-1;
|
|
|
|
HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
|
|
|
|
Mask <<= SA->getValue();
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
2006-02-18 02:43:25 +00:00
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
2006-02-16 21:11:51 +00:00
|
|
|
KnownZero >>= SA->getValue();
|
|
|
|
KnownOne >>= SA->getValue();
|
|
|
|
KnownZero |= HighBits; // high bits known zero.
|
2006-01-30 04:09:27 +00:00
|
|
|
}
|
2006-02-18 02:43:25 +00:00
|
|
|
return;
|
2006-02-16 21:11:51 +00:00
|
|
|
case ISD::SRA:
|
|
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
|
|
uint64_t HighBits = (1ULL << SA->getValue())-1;
|
|
|
|
HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
|
|
|
|
Mask <<= SA->getValue();
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
|
|
|
|
KnownZero >>= SA->getValue();
|
|
|
|
KnownOne >>= SA->getValue();
|
|
|
|
|
|
|
|
// Handle the sign bits.
|
|
|
|
uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
|
|
|
|
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
|
|
|
|
|
|
|
|
if (KnownZero & SignBit) { // New bits are known zero.
|
|
|
|
KnownZero |= HighBits;
|
|
|
|
} else if (KnownOne & SignBit) { // New bits are known one.
|
|
|
|
KnownOne |= HighBits;
|
2006-01-30 04:09:27 +00:00
|
|
|
}
|
|
|
|
}
|
2006-02-18 02:43:25 +00:00
|
|
|
return;
|
2006-02-26 23:36:02 +00:00
|
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
|
|
|
|
// Sign extension. Compute the demanded bits in the result that are not
|
|
|
|
// present in the input.
|
|
|
|
uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
|
|
|
|
|
|
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
|
|
|
|
int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
|
|
|
|
|
|
|
|
// If the sign extended bits are demanded, we know that the sign
|
|
|
|
// bit is demanded.
|
|
|
|
if (NewBits)
|
|
|
|
InputDemandedBits |= InSignBit;
|
|
|
|
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
|
|
|
|
KnownZero, KnownOne, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
|
|
// top bits of the result.
|
|
|
|
if (KnownZero & InSignBit) { // Input sign bit known clear
|
|
|
|
KnownZero |= NewBits;
|
|
|
|
KnownOne &= ~NewBits;
|
|
|
|
} else if (KnownOne & InSignBit) { // Input sign bit known set
|
|
|
|
KnownOne |= NewBits;
|
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
} else { // Input sign bit unknown
|
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
KnownOne &= ~NewBits;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
2006-01-30 04:09:27 +00:00
|
|
|
case ISD::CTTZ:
|
|
|
|
case ISD::CTLZ:
|
2006-02-16 21:11:51 +00:00
|
|
|
case ISD::CTPOP: {
|
|
|
|
MVT::ValueType VT = Op.getValueType();
|
|
|
|
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
|
|
|
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
|
|
|
KnownOne = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case ISD::ZEXTLOAD: {
|
2006-02-26 23:36:02 +00:00
|
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
|
|
|
|
KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
|
2006-02-16 21:11:51 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
case ISD::ZERO_EXTEND: {
|
2006-02-26 23:36:02 +00:00
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
|
|
uint64_t NewBits = (~InMask) & Mask;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
|
|
KnownOne, Depth+1);
|
|
|
|
KnownZero |= NewBits & Mask;
|
|
|
|
KnownOne &= ~NewBits;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND: {
|
|
|
|
MVT::ValueType InVT = Op.getOperand(0).getValueType();
|
|
|
|
unsigned InBits = MVT::getSizeInBits(InVT);
|
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(InVT);
|
|
|
|
uint64_t InSignBit = 1ULL << (InBits-1);
|
|
|
|
uint64_t NewBits = (~InMask) & Mask;
|
|
|
|
uint64_t InDemandedBits = Mask & InMask;
|
|
|
|
|
|
|
|
// If any of the sign extended bits are demanded, we know that the sign
|
|
|
|
// bit is demanded.
|
|
|
|
if (NewBits & Mask)
|
|
|
|
InDemandedBits |= InSignBit;
|
|
|
|
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
|
|
|
|
KnownOne, Depth+1);
|
|
|
|
// If the sign bit is known zero or one, the top bits match.
|
|
|
|
if (KnownZero & InSignBit) {
|
|
|
|
KnownZero |= NewBits;
|
|
|
|
KnownOne &= ~NewBits;
|
|
|
|
} else if (KnownOne & InSignBit) {
|
|
|
|
KnownOne |= NewBits;
|
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
} else { // Otherwise, top bits aren't known.
|
|
|
|
KnownOne &= ~NewBits;
|
|
|
|
KnownZero &= ~NewBits;
|
|
|
|
}
|
2006-02-16 21:11:51 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
case ISD::ANY_EXTEND: {
|
2006-02-26 23:36:02 +00:00
|
|
|
MVT::ValueType VT = Op.getOperand(0).getValueType();
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
|
|
|
|
KnownZero, KnownOne, Depth+1);
|
2006-02-16 21:11:51 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
case ISD::AssertZext: {
|
2006-02-26 23:36:02 +00:00
|
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
uint64_t InMask = MVT::getIntVTBitMask(VT);
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
|
|
KnownOne, Depth+1);
|
|
|
|
KnownZero |= (~InMask) & Mask;
|
2006-02-16 21:11:51 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
|
|
|
|
// Output known-0 bits are known if clear or set in both the low clear bits
|
|
|
|
// common to both LHS & RHS;
|
|
|
|
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
|
|
|
|
CountTrailingZeros_64(~KnownZero2));
|
|
|
|
|
|
|
|
KnownZero = (1ULL << KnownZeroOut) - 1;
|
|
|
|
KnownOne = 0;
|
|
|
|
return;
|
|
|
|
}
|
2006-02-27 01:00:42 +00:00
|
|
|
case ISD::SUB: {
|
|
|
|
ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
|
|
|
|
if (!CLHS) return;
|
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
// We know that the top bits of C-X are clear if X contains less bits
|
|
|
|
// than C (i.e. no wrap-around can happen). For example, 20-X is
|
2006-02-27 01:00:42 +00:00
|
|
|
// positive if we can prove that X is >= 0 and < 16.
|
|
|
|
MVT::ValueType VT = CLHS->getValueType(0);
|
|
|
|
if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
|
|
|
|
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
|
|
|
|
uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
|
|
|
|
MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
|
|
|
|
ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
|
|
|
|
|
|
|
|
// If all of the MaskV bits are known to be zero, then we know the output
|
|
|
|
// top bits are zero, because we now know that the output is from [0-C].
|
|
|
|
if ((KnownZero & MaskV) == MaskV) {
|
|
|
|
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
|
|
|
|
KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
|
|
|
|
KnownOne = 0; // No one bits known.
|
|
|
|
} else {
|
|
|
|
KnownOne = KnownOne = 0; // Otherwise, nothing known.
|
|
|
|
}
|
|
|
|
}
|
2006-02-18 02:43:25 +00:00
|
|
|
return;
|
2006-02-27 01:00:42 +00:00
|
|
|
}
|
2006-01-30 04:09:27 +00:00
|
|
|
default:
|
|
|
|
// Allow the target to implement this method for its nodes.
|
|
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
|
2006-02-16 21:11:51 +00:00
|
|
|
computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
|
2006-02-18 02:43:25 +00:00
|
|
|
return;
|
2006-01-30 04:09:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-02-16 21:11:51 +00:00
|
|
|
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
|
|
|
|
/// in Mask are known to be either zero or one and return them in the
|
|
|
|
/// KnownZero/KnownOne bitsets.
|
|
|
|
void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
|
|
|
uint64_t Mask,
|
|
|
|
uint64_t &KnownZero,
|
|
|
|
uint64_t &KnownOne,
|
|
|
|
unsigned Depth) const {
|
2006-01-30 04:09:27 +00:00
|
|
|
assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
|
|
" is a target node!");
|
2006-02-16 21:11:51 +00:00
|
|
|
KnownZero = 0;
|
|
|
|
KnownOne = 0;
|
2005-12-21 23:05:39 +00:00
|
|
|
}
|
2006-01-26 20:37:03 +00:00
|
|
|
|
2006-03-01 04:52:55 +00:00
|
|
|
SDOperand TargetLowering::
|
|
|
|
PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
|
|
|
|
// Default implementation: no optimization.
|
|
|
|
return SDOperand();
|
|
|
|
}
|
|
|
|
|
2006-02-04 02:13:02 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Inline Assembler Implementation Methods
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
TargetLowering::ConstraintType
|
|
|
|
TargetLowering::getConstraintType(char ConstraintLetter) const {
|
|
|
|
// FIXME: lots more standard ones to handle.
|
|
|
|
switch (ConstraintLetter) {
|
|
|
|
default: return C_Unknown;
|
|
|
|
case 'r': return C_RegisterClass;
|
2006-02-24 01:10:46 +00:00
|
|
|
case 'm': // memory
|
|
|
|
case 'o': // offsetable
|
|
|
|
case 'V': // not offsetable
|
|
|
|
return C_Memory;
|
2006-02-04 02:13:02 +00:00
|
|
|
case 'i': // Simple Integer or Relocatable Constant
|
|
|
|
case 'n': // Simple Integer
|
|
|
|
case 's': // Relocatable Constant
|
|
|
|
case 'I': // Target registers.
|
|
|
|
case 'J':
|
|
|
|
case 'K':
|
|
|
|
case 'L':
|
|
|
|
case 'M':
|
|
|
|
case 'N':
|
|
|
|
case 'O':
|
2006-02-24 01:10:46 +00:00
|
|
|
case 'P':
|
|
|
|
return C_Other;
|
2006-02-04 02:13:02 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
|
|
|
|
char ConstraintLetter) {
|
|
|
|
switch (ConstraintLetter) {
|
|
|
|
default: return false;
|
|
|
|
case 'i': // Simple Integer or Relocatable Constant
|
|
|
|
case 'n': // Simple Integer
|
|
|
|
case 's': // Relocatable Constant
|
|
|
|
return true; // FIXME: not right.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-01-26 20:37:03 +00:00
|
|
|
std::vector<unsigned> TargetLowering::
|
2006-02-22 00:56:39 +00:00
|
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
|
|
MVT::ValueType VT) const {
|
|
|
|
return std::vector<unsigned>();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
|
2006-02-21 23:11:00 +00:00
|
|
|
getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
|
|
MVT::ValueType VT) const {
|
2006-02-22 00:56:39 +00:00
|
|
|
if (Constraint[0] != '{')
|
|
|
|
return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
|
2006-02-01 01:29:47 +00:00
|
|
|
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
|
|
|
|
|
|
|
|
// Remove the braces from around the name.
|
|
|
|
std::string RegName(Constraint.begin()+1, Constraint.end()-1);
|
2006-02-22 00:56:39 +00:00
|
|
|
|
|
|
|
// Figure out which register class contains this reg.
|
2006-01-26 20:37:03 +00:00
|
|
|
const MRegisterInfo *RI = TM.getRegisterInfo();
|
2006-02-22 00:56:39 +00:00
|
|
|
for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
|
|
|
|
E = RI->regclass_end(); RCI != E; ++RCI) {
|
|
|
|
const TargetRegisterClass *RC = *RCI;
|
2006-02-22 23:00:51 +00:00
|
|
|
|
|
|
|
// If none of the the value types for this register class are valid, we
|
|
|
|
// can't use it. For example, 64-bit reg classes on 32-bit targets.
|
|
|
|
bool isLegal = false;
|
|
|
|
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
|
|
|
|
I != E; ++I) {
|
|
|
|
if (isTypeLegal(*I)) {
|
|
|
|
isLegal = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!isLegal) continue;
|
|
|
|
|
2006-02-22 00:56:39 +00:00
|
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
|
|
I != E; ++I) {
|
2006-02-22 23:00:51 +00:00
|
|
|
if (StringsEqualNoCase(RegName, RI->get(*I).Name))
|
2006-02-22 00:56:39 +00:00
|
|
|
return std::make_pair(*I, RC);
|
|
|
|
}
|
2006-01-26 20:37:03 +00:00
|
|
|
}
|
2006-02-01 01:29:47 +00:00
|
|
|
|
2006-02-22 00:56:39 +00:00
|
|
|
return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
|
2006-01-26 20:37:03 +00:00
|
|
|
}
|