llvm-6502/lib/Target/SystemZ/SystemZInstrInfo.td

336 lines
14 KiB
TableGen
Raw Normal View History

//===- SystemZInstrInfo.td - SystemZ Instruction defs ---------*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the SystemZ instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "SystemZInstrFormats.td"
//===----------------------------------------------------------------------===//
// SystemZ Specific Node Definitions.
//===----------------------------------------------------------------------===//
def SystemZretflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
let neverHasSideEffects = 1 in
def NOP : Pseudo<(outs), (ins), "# no-op", []>;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff.
//===----------------------------------------------------------------------===//
def LL16 : SDNodeXForm<imm, [{
// Transformation function: return low 16 bits.
return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
}]>;
def LH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 16-31.
return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
}]>;
def HL16 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-47.
return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
}]>;
def HH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 48-63.
return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
}]>;
def LO32 : SDNodeXForm<imm, [{
// Transformation function: return low 32 bits.
return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-63.
return getI32Imm(N->getZExtValue() >> 32);
}]>;
def i64ll16 : PatLeaf<(imm), [{
// i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i64lh16 : PatLeaf<(imm), [{
// i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i64hl16 : PatLeaf<(i64 imm), [{
// i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
}], HL16>;
def i64hh16 : PatLeaf<(i64 imm), [{
// i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
}], HH16>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
// field.
if (N->getValueType(0) == MVT::i64) {
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int16_t)val);
} else if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getZExtValue();
return ((int32_t)val == (int16_t)val);
}
return false;
}]>;
def immSExt32 : PatLeaf<(i64 imm), [{
// immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
// field.
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int32_t)val);
}]>;
def i64lo32 : PatLeaf<(i64 imm), [{
// i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
// bits set.
return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
}], LO32>;
def i64hi32 : PatLeaf<(i64 imm), [{
// i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
}], HI32>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// FIXME: Provide proper encoding!
let isReturn = 1, isTerminator = 1 in {
def RET : Pseudo<(outs), (ins), "br\t%r14", [(SystemZretflag)]>;
}
//===----------------------------------------------------------------------===//
// Move Instructions
// FIXME: Provide proper encoding!
let neverHasSideEffects = 1 in {
def MOV32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src),
"lr\t{$dst, $src}",
[]>;
def MOV64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src),
"lgr\t{$dst, $src}",
[]>;
}
def MOVSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
"lgfr\t{$dst, $src}",
[(set GR64:$dst, (sext GR32:$src))]>;
def MOVZX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
"llgfr\t{$dst, $src}",
[(set GR64:$dst, (zext GR32:$src))]>;
// FIXME: Provide proper encoding!
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOV32ri16 : Pseudo<(outs GR32:$dst), (ins i32imm:$src),
"lhi\t{$dst, $src}",
[(set GR32:$dst, immSExt16:$src)]>;
def MOV64ri16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"lghi\t{$dst, $src}",
[(set GR64:$dst, immSExt16:$src)]>;
def MOV64rill16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"llill\t{$dst, $src}",
[(set GR64:$dst, i64ll16:$src)]>;
def MOV64rilh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"llilh\t{$dst, $src}",
[(set GR64:$dst, i64lh16:$src)]>;
def MOV64rihl16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"llihl\t{$dst, $src}",
[(set GR64:$dst, i64hl16:$src)]>;
def MOV64rihh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"llihh\t{$dst, $src}",
[(set GR64:$dst, i64hh16:$src)]>;
// FIXME: these 3 instructions seem to require extimm facility
def MOV64ri32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"lgfi\t{$dst, $src}",
[(set GR64:$dst, immSExt32:$src)]>;
def MOV64rilo32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"llilf\t{$dst, $src}",
[(set GR64:$dst, i64lo32:$src)]>;
def MOV64rihi32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
"llihf\t{$dst, $src}",
[(set GR64:$dst, i64hi32:$src)]>;
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions
let isTwoAddress = 1 in {
let Defs = [PSW] in {
let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
// FIXME: Provide proper encoding!
def ADD32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"ar\t{$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
(implicit PSW)]>;
def ADD64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"agr\t{$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
(implicit PSW)]>;
}
// FIXME: Provide proper encoding!
def ADD32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"ahi\t{$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, immSExt16:$src2)),
(implicit PSW)]>;
def ADD32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"afi\t{$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, imm:$src2)),
(implicit PSW)]>;
def ADD64ri16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"aghi\t{$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, immSExt16:$src2)),
(implicit PSW)]>;
def ADD64ri32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"agfi\t{$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, immSExt32:$src2)),
(implicit PSW)]>;
let isCommutable = 1 in { // X = AND Y, Z == X = AND Z, Y
// FIXME: Provide proper encoding!
def AND32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"nr\t{$dst, $src2}",
[(set GR32:$dst, (and GR32:$src1, GR32:$src2))]>;
def AND64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"ngr\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
}
// FIXME: Provide proper encoding!
def AND64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nill\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64ll16:$src2))]>;
def AND64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nilh\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64lh16:$src2))]>;
def AND64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nihl\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64hl16:$src2))]>;
def AND64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nihh\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64hh16:$src2))]>;
// FIXME: these 2 instructions seem to require extimm facility
def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nilf\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64lo32:$src2))]>;
def AND64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nihf\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64hi32:$src2))]>;
let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y
// FIXME: Provide proper encoding!
def OR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"or\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, GR32:$src2))]>;
def OR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"ogr\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
}
def OR32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
"oill\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, i64ll16:$src2))]>;
def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
"oilh\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, i64lh16:$src2))]>;
def OR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"oilf\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, imm:$src2))]>;
def OR64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"oill\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64ll16:$src2))]>;
def OR64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"oilh\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64lh16:$src2))]>;
def OR64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"oihl\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64hl16:$src2))]>;
def OR64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"oihh\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64hh16:$src2))]>;
// FIXME: these 2 instructions seem to require extimm facility
def OR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"oilf\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64lo32:$src2))]>;
def OR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"oihf\t{$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64hi32:$src2))]>;
// FIXME: Provide proper encoding!
def SUB32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"sr\t{$dst, $src2}",
[(set GR32:$dst, (sub GR32:$src1, GR32:$src2))]>;
def SUB64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"sgr\t{$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>;
let isCommutable = 1 in { // X = XOR Y, Z == X = XOR Z, Y
// FIXME: Provide proper encoding!
def XOR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"xr\t{$dst, $src2}",
[(set GR32:$dst, (xor GR32:$src1, GR32:$src2))]>;
def XOR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"xgr\t{$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
}
def XOR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"xilf\t{$dst, $src2}",
[(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>;
// FIXME: these 2 instructions seem to require extimm facility
def XOR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"xilf\t{$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64lo32:$src2))]>;
def XOR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"xihf\t{$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64hi32:$src2))]>;
} // Defs = [PSW]
} // isTwoAddress = 1
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns.
//===----------------------------------------------------------------------===//
// anyext
def : Pat<(i64 (anyext GR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//
// FIXME: use add/sub tricks with 32678/-32768
// trunc patterns
def : Pat<(i32 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
// sext_inreg patterns
def : Pat<(sext_inreg GR64:$src, i32),
(MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;