llvm-6502/lib/CodeGen/TwoAddressInstructionPass.cpp

1896 lines
70 KiB
C++
Raw Normal View History

//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
// A = B op C
//
// to:
//
// A = B
// A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
STATISTIC(NumReMats, "Number of instructions re-materialized");
STATISTIC(NumDeletes, "Number of dead instructions deleted");
STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
namespace {
class TwoAddressInstructionPass : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const InstrItineraryData *InstrItins;
MachineRegisterInfo *MRI;
LiveVariables *LV;
AliasAnalysis *AA;
CodeGenOpt::Level OptLevel;
// DistanceMap - Keep track the distance of a MI from the start of the
// current basic block.
DenseMap<MachineInstr*, unsigned> DistanceMap;
// SrcRegMap - A map from virtual registers to physical registers which
// are likely targets to be coalesced to due to copies from physical
// registers to virtual registers. e.g. v1024 = move r0.
DenseMap<unsigned, unsigned> SrcRegMap;
// DstRegMap - A map from virtual registers to physical registers which
// are likely targets to be coalesced to due to copies to physical
// registers from virtual registers. e.g. r1 = move v1024.
DenseMap<unsigned, unsigned> DstRegMap;
/// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
/// during the initial walk of the machine function.
SmallVector<MachineInstr*, 16> RegSequences;
bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned Reg,
MachineBasicBlock::iterator OldPos);
bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
MachineInstr *MI, MachineInstr *DefMI,
MachineBasicBlock *MBB, unsigned Loc);
bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
unsigned &LastDef);
MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
unsigned Dist);
bool isProfitableToCommute(unsigned regB, unsigned regC,
MachineInstr *MI, MachineBasicBlock *MBB,
unsigned Dist);
bool CommuteInstruction(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned RegC, unsigned Dist);
bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned RegA, unsigned RegB, unsigned Dist);
typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
SmallVector<NewKill, 4> &NewKills,
MachineBasicBlock *MBB, unsigned Dist);
bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi, unsigned Dist);
bool isDefTooClose(unsigned Reg, unsigned Dist,
MachineInstr *MI, MachineBasicBlock *MBB);
bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
unsigned Reg);
bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
unsigned Reg);
bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned SrcIdx, unsigned DstIdx,
unsigned Dist,
SmallPtrSet<MachineInstr*, 8> &Processed);
void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed);
void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed);
void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
/// sub-register references of the register defined by REG_SEQUENCE.
bool EliminateRegSequences();
public:
static char ID; // Pass identification, replacement for typeid
TwoAddressInstructionPass() : MachineFunctionPass(ID) {
initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
AU.addPreservedID(PHIEliminationID);
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - Pass entry point.
bool runOnMachineFunction(MachineFunction&);
};
}
char TwoAddressInstructionPass::ID = 0;
INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
"Two-Address instruction pass", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
"Two-Address instruction pass", false, false)
char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
MachineInstr *MI, unsigned SavedReg,
MachineBasicBlock::iterator OldPos) {
// FIXME: Shouldn't we be trying to do this before we three-addressify the
// instruction? After this transformation is done, we no longer need
// the instruction to be in three-address form.
// Check if it's safe to move this instruction.
bool SeenStore = true; // Be conservative.
if (!MI->isSafeToMove(TII, AA, SeenStore))
return false;
unsigned DefReg = 0;
SmallSet<unsigned, 4> UseRegs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MO.isUse() && MOReg != SavedReg)
UseRegs.insert(MO.getReg());
if (!MO.isDef())
continue;
if (MO.isImplicit())
// Don't try to move it if it implicitly defines a register.
return false;
if (DefReg)
// For now, don't move any instructions that define multiple registers.
return false;
DefReg = MO.getReg();
}
// Find the instruction that kills SavedReg.
MachineInstr *KillMI = NULL;
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(SavedReg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
if (!UseMO.isKill())
continue;
KillMI = UseMO.getParent();
break;
}
// If we find the instruction that kills SavedReg, and it is in an
// appropriate location, we can try to sink the current instruction
// past it.
if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
KillMI->getDesc().isTerminator())
return false;
// If any of the definitions are used by another instruction between the
// position and the kill use, then it's not safe to sink it.
//
// FIXME: This can be sped up if there is an easy way to query whether an
// instruction is before or after another instruction. Then we can use
// MachineRegisterInfo def / use instead.
MachineOperand *KillMO = NULL;
MachineBasicBlock::iterator KillPos = KillMI;
++KillPos;
unsigned NumVisited = 0;
for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
MachineInstr *OtherMI = I;
// DBG_VALUE cannot be counted against the limit.
if (OtherMI->isDebugValue())
continue;
if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
return false;
++NumVisited;
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OtherMI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (DefReg == MOReg)
return false;
if (MO.isKill()) {
if (OtherMI == KillMI && MOReg == SavedReg)
// Save the operand that kills the register. We want to unset the kill
// marker if we can sink MI past it.
KillMO = &MO;
else if (UseRegs.count(MOReg))
// One of the uses is killed before the destination.
return false;
}
}
}
// Update kill and LV information.
KillMO->setIsKill(false);
KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
KillMO->setIsKill(true);
if (LV)
LV->replaceKillInstruction(SavedReg, KillMI, MI);
// Move instruction to its destination.
MBB->remove(MI);
MBB->insert(KillPos, MI);
++Num3AddrSunk;
return true;
}
/// isTwoAddrUse - Return true if the specified MI is using the specified
/// register as a two-address operand.
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
const MCInstrDesc &MCID = UseMI->getDesc();
for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg &&
(MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
// Earlier use is a two-address one.
return true;
}
return false;
}
/// isProfitableToReMat - Return true if the heuristics determines it is likely
/// to be profitable to re-materialize the definition of Reg rather than copy
/// the register.
bool
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
const TargetRegisterClass *RC,
MachineInstr *MI, MachineInstr *DefMI,
MachineBasicBlock *MBB, unsigned Loc) {
bool OtherUse = false;
for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = UseMO.getParent();
MachineBasicBlock *UseMBB = UseMI->getParent();
if (UseMBB == MBB) {
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
if (DI != DistanceMap.end() && DI->second == Loc)
continue; // Current use.
OtherUse = true;
// There is at least one other use in the MBB that will clobber the
// register.
if (isTwoAddrUse(UseMI, Reg))
return true;
}
}
// If other uses in MBB are not two-address uses, then don't remat.
if (OtherUse)
return false;
// No other uses in the same block, remat if it's defined in the same
// block so it does not unnecessarily extend the live range.
return MBB == DefMI->getParent();
}
/// NoUseAfterLastDef - Return true if there are no intervening uses between the
/// last instruction in the MBB that defines the specified register and the
/// two-address instruction which is being processed. It also returns the last
/// def location by reference
bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
MachineBasicBlock *MBB, unsigned Dist,
unsigned &LastDef) {
LastDef = 0;
unsigned LastUse = Dist;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
MachineInstr *MI = MO.getParent();
if (MI->getParent() != MBB || MI->isDebugValue())
continue;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
if (DI == DistanceMap.end())
continue;
if (MO.isUse() && DI->second < LastUse)
LastUse = DI->second;
if (MO.isDef() && DI->second > LastDef)
LastDef = DI->second;
}
return !(LastUse > LastDef && LastUse < Dist);
}
MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
MachineBasicBlock *MBB,
unsigned Dist) {
unsigned LastUseDist = 0;
MachineInstr *LastUse = 0;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
MachineInstr *MI = MO.getParent();
if (MI->getParent() != MBB || MI->isDebugValue())
continue;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
if (DI == DistanceMap.end())
continue;
if (DI->second >= Dist)
continue;
if (MO.isUse() && DI->second > LastUseDist) {
LastUse = DI->first;
LastUseDist = DI->second;
}
}
return LastUse;
}
/// isCopyToReg - Return true if the specified MI is a copy instruction or
/// a extract_subreg instruction. It also returns the source and destination
/// registers and whether they are physical registers by reference.
static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
unsigned &SrcReg, unsigned &DstReg,
bool &IsSrcPhys, bool &IsDstPhys) {
SrcReg = 0;
DstReg = 0;
if (MI.isCopy()) {
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(1).getReg();
} else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
DstReg = MI.getOperand(0).getReg();
SrcReg = MI.getOperand(2).getReg();
} else
return false;
IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
return true;
}
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
/// isKilled - Test if the given register value, which is used by the given
/// instruction, is killed by the given instruction. This looks through
/// coalescable copies to see if the original value is potentially not killed.
///
/// For example, in this code:
///
/// %reg1034 = copy %reg1024
/// %reg1035 = copy %reg1025<kill>
/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
///
/// %reg1034 is not considered to be killed, since it is copied from a
/// register which is not killed. Treating it as not killed lets the
/// normal heuristics commute the (two-address) add, which lets
/// coalescing eliminate the extra copy.
///
static bool isKilled(MachineInstr &MI, unsigned Reg,
const MachineRegisterInfo *MRI,
const TargetInstrInfo *TII) {
MachineInstr *DefMI = &MI;
for (;;) {
if (!DefMI->killsRegister(Reg))
return false;
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return true;
MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
// If there are multiple defs, we can't do a simple analysis, so just
// go with what the kill flag says.
if (llvm::next(Begin) != MRI->def_end())
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
return true;
DefMI = &*Begin;
bool IsSrcPhys, IsDstPhys;
unsigned SrcReg, DstReg;
// If the def is something other than a copy, then it isn't going to
// be coalesced, so follow the kill flag.
if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
return true;
Reg = SrcReg;
}
}
/// isTwoAddrUse - Return true if the specified MI uses the specified register
/// as a two-address use. If so, return the destination register by reference.
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned NumOps = MI.isInlineAsm()
? MI.getNumOperands() : MCID.getNumOperands();
for (unsigned i = 0; i != NumOps; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
continue;
unsigned ti;
if (MI.isRegTiedToDefOperand(i, &ti)) {
DstReg = MI.getOperand(ti).getReg();
return true;
}
}
return false;
}
/// findLocalKill - Look for an instruction below MI in the MBB that kills the
/// specified register. Returns null if there are any other Reg use between the
/// instructions.
static
MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
MachineInstr *MI, MachineRegisterInfo *MRI,
DenseMap<MachineInstr*, unsigned> &DistanceMap) {
MachineInstr *KillMI = 0;
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(Reg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
if (UseMI == MI || UseMI->getParent() != MBB)
continue;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
if (DI != DistanceMap.end())
continue;
if (!UI.getOperand().isKill())
return 0;
if (KillMI)
return 0; // -O0 kill markers cannot be trusted?
KillMI = UseMI;
}
return KillMI;
}
/// findOnlyInterestingUse - Given a register, if has a single in-basic block
/// use, return the use instruction if it's a copy or a two-address use.
static
MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
MachineRegisterInfo *MRI,
const TargetInstrInfo *TII,
bool &IsCopy,
unsigned &DstReg, bool &IsDstPhys) {
if (!MRI->hasOneNonDBGUse(Reg))
// None or more than one use.
return 0;
MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
if (UseMI.getParent() != MBB)
return 0;
unsigned SrcReg;
bool IsSrcPhys;
if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
IsCopy = true;
return &UseMI;
}
IsDstPhys = false;
if (isTwoAddrUse(UseMI, Reg, DstReg)) {
IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
return &UseMI;
}
return 0;
}
/// getMappedReg - Return the physical register the specified virtual register
/// might be mapped to.
static unsigned
getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
while (TargetRegisterInfo::isVirtualRegister(Reg)) {
DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
if (SI == RegMap.end())
return 0;
Reg = SI->second;
}
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return Reg;
return 0;
}
/// regsAreCompatible - Return true if the two registers are equal or aliased.
///
static bool
regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
if (RegA == RegB)
return true;
if (!RegA || !RegB)
return false;
return TRI->regsOverlap(RegA, RegB);
}
/// isProfitableToReMat - Return true if it's potentially profitable to commute
/// the two-address instruction that's being processed.
bool
TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
MachineInstr *MI, MachineBasicBlock *MBB,
unsigned Dist) {
if (OptLevel == CodeGenOpt::None)
return false;
// Determine if it's profitable to commute this two address instruction. In
// general, we want no uses between this instruction and the definition of
// the two-address register.
// e.g.
// %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
// %reg1029<def> = MOV8rr %reg1028
// %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
// insert => %reg1030<def> = MOV8rr %reg1028
// %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
// In this case, it might not be possible to coalesce the second MOV8rr
// instruction if the first one is coalesced. So it would be profitable to
// commute it:
// %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
// %reg1029<def> = MOV8rr %reg1028
// %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
// insert => %reg1030<def> = MOV8rr %reg1029
// %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
if (!MI->killsRegister(regC))
return false;
// Ok, we have something like:
// %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
// let's see if it's worth commuting it.
// Look for situations like this:
// %reg1024<def> = MOV r1
// %reg1025<def> = MOV r0
// %reg1026<def> = ADD %reg1024, %reg1025
// r0 = MOV %reg1026
// Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
unsigned FromRegB = getMappedReg(regB, SrcRegMap);
unsigned FromRegC = getMappedReg(regC, SrcRegMap);
unsigned ToRegB = getMappedReg(regB, DstRegMap);
unsigned ToRegC = getMappedReg(regC, DstRegMap);
if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
((!FromRegC && !ToRegC) ||
regsAreCompatible(FromRegB, ToRegC, TRI) ||
regsAreCompatible(FromRegC, ToRegB, TRI)))
return true;
// If there is a use of regC between its last def (could be livein) and this
// instruction, then bail.
unsigned LastDefC = 0;
if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
return false;
// If there is a use of regB between its last def (could be livein) and this
// instruction, then go ahead and make this transformation.
unsigned LastDefB = 0;
if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
return true;
// Since there are no intervening uses for both registers, then commute
// if the def of regC is closer. Its live interval is shorter.
return LastDefB && LastDefC && LastDefC > LastDefB;
}
/// CommuteInstruction - Commute a two-address instruction and update the basic
/// block, distance map, and live variables if needed. Return true if it is
/// successful.
bool
TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned RegC, unsigned Dist) {
MachineInstr *MI = mi;
DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
MachineInstr *NewMI = TII->commuteInstruction(MI);
if (NewMI == 0) {
DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
return false;
}
DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
// If the instruction changed to commute it, update livevar.
if (NewMI != MI) {
if (LV)
// Update live variables
LV->replaceKillInstruction(RegC, MI, NewMI);
mbbi->insert(mi, NewMI); // Insert the new inst
mbbi->erase(mi); // Nuke the old inst.
mi = NewMI;
DistanceMap.insert(std::make_pair(NewMI, Dist));
}
// Update source register map.
unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
if (FromRegC) {
unsigned RegA = MI->getOperand(0).getReg();
SrcRegMap[RegA] = FromRegC;
}
return true;
}
/// isProfitableToConv3Addr - Return true if it is profitable to convert the
/// given 2-address instruction to a 3-address one.
bool
TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
// Look for situations like this:
// %reg1024<def> = MOV r1
// %reg1025<def> = MOV r0
// %reg1026<def> = ADD %reg1024, %reg1025
// r2 = MOV %reg1026
// Turn ADD into a 3-address instruction to avoid a copy.
unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
if (!FromRegB)
return false;
unsigned ToRegA = getMappedReg(RegA, DstRegMap);
return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
}
/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
/// three address one. Return true if this transformation was successful.
bool
TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned RegA, unsigned RegB,
unsigned Dist) {
MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
if (NewMI) {
DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
bool Sunk = false;
if (NewMI->findRegisterUseOperand(RegB, false, TRI))
// FIXME: Temporary workaround. If the new instruction doesn't
// uses RegB, convertToThreeAddress must have created more
// then one instruction.
Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
mbbi->erase(mi); // Nuke the old inst.
if (!Sunk) {
DistanceMap.insert(std::make_pair(NewMI, Dist));
mi = NewMI;
nmi = llvm::next(mi);
}
// Update source and destination register maps.
SrcRegMap.erase(RegA);
DstRegMap.erase(RegB);
return true;
}
return false;
}
/// ScanUses - Scan forward recursively for only uses, update maps if the use
/// is a copy or a two-address instruction.
void
TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed) {
SmallVector<unsigned, 4> VirtRegPairs;
bool IsDstPhys;
bool IsCopy = false;
unsigned NewReg = 0;
unsigned Reg = DstReg;
while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
NewReg, IsDstPhys)) {
if (IsCopy && !Processed.insert(UseMI))
break;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
if (DI != DistanceMap.end())
// Earlier in the same MBB.Reached via a back edge.
break;
if (IsDstPhys) {
VirtRegPairs.push_back(NewReg);
break;
}
bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
if (!isNew)
assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
VirtRegPairs.push_back(NewReg);
Reg = NewReg;
}
if (!VirtRegPairs.empty()) {
unsigned ToReg = VirtRegPairs.back();
VirtRegPairs.pop_back();
while (!VirtRegPairs.empty()) {
unsigned FromReg = VirtRegPairs.back();
VirtRegPairs.pop_back();
bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
if (!isNew)
assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
ToReg = FromReg;
}
bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
if (!isNew)
assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
}
}
/// ProcessCopy - If the specified instruction is not yet processed, process it
/// if it's a copy. For a copy instruction, we find the physical registers the
/// source and destination registers might be mapped to. These are kept in
/// point-to maps used to determine future optimizations. e.g.
/// v1024 = mov r0
/// v1025 = mov r1
/// v1026 = add v1024, v1025
/// r1 = mov r1026
/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
/// potentially joined with r1 on the output side. It's worthwhile to commute
/// 'add' to eliminate a copy.
void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed) {
if (Processed.count(MI))
return;
bool IsSrcPhys, IsDstPhys;
unsigned SrcReg, DstReg;
if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
return;
if (IsDstPhys && !IsSrcPhys)
DstRegMap.insert(std::make_pair(SrcReg, DstReg));
else if (!IsDstPhys && IsSrcPhys) {
bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
if (!isNew)
assert(SrcRegMap[DstReg] == SrcReg &&
"Can't map to two src physical registers!");
ScanUses(DstReg, MBB, Processed);
}
Processed.insert(MI);
return;
}
/// isSafeToDelete - If the specified instruction does not produce any side
/// effects and all of its defs are dead, then it's safe to delete.
static bool isSafeToDelete(MachineInstr *MI,
const TargetInstrInfo *TII,
SmallVector<unsigned, 4> &Kills) {
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.mayStore() || MCID.isCall())
return false;
if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
return false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isDef() && !MO.isDead())
return false;
if (MO.isUse() && MO.isKill())
Kills.push_back(MO.getReg());
}
return true;
}
/// canUpdateDeletedKills - Check if all the registers listed in Kills are
/// killed by instructions in MBB preceding the current instruction at
/// position Dist. If so, return true and record information about the
/// preceding kills in NewKills.
bool TwoAddressInstructionPass::
canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
SmallVector<NewKill, 4> &NewKills,
MachineBasicBlock *MBB, unsigned Dist) {
while (!Kills.empty()) {
unsigned Kill = Kills.back();
Kills.pop_back();
if (TargetRegisterInfo::isPhysicalRegister(Kill))
return false;
MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
if (!LastKill)
return false;
bool isModRef = LastKill->definesRegister(Kill);
NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
LastKill));
}
return true;
}
/// DeleteUnusedInstr - If an instruction with a tied register operand can
/// be safely deleted, just delete it.
bool
TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned Dist) {
// Check if the instruction has no side effects and if all its defs are dead.
SmallVector<unsigned, 4> Kills;
if (!isSafeToDelete(mi, TII, Kills))
return false;
// If this instruction kills some virtual registers, we need to
// update the kill information. If it's not possible to do so,
// then bail out.
SmallVector<NewKill, 4> NewKills;
if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
return false;
if (LV) {
while (!NewKills.empty()) {
MachineInstr *NewKill = NewKills.back().second;
unsigned Kill = NewKills.back().first.first;
bool isDead = NewKills.back().first.second;
NewKills.pop_back();
if (LV->removeVirtualRegisterKilled(Kill, mi)) {
if (isDead)
LV->addVirtualRegisterDead(Kill, NewKill);
else
LV->addVirtualRegisterKilled(Kill, NewKill);
}
}
}
mbbi->erase(mi); // Nuke the old inst.
mi = nmi;
return true;
}
/// RescheduleMIBelowKill - If there is one more local instruction that reads
/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
/// instruction in order to eliminate the need for the copy.
bool
TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
unsigned Reg) {
MachineInstr *MI = &*mi;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
if (DI == DistanceMap.end())
// Must be created from unfolded load. Don't waste time trying this.
return false;
MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
// Don't mess with copies, they may be coalesced later.
return false;
const MCInstrDesc &MCID = KillMI->getDesc();
if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
MCID.isTerminator())
// Don't move pass calls, etc.
return false;
unsigned DstReg;
if (isTwoAddrUse(*KillMI, Reg, DstReg))
return false;
bool SeenStore = true;
if (!MI->isSafeToMove(TII, AA, SeenStore))
return false;
if (TII->getInstrLatency(InstrItins, MI) > 1)
// FIXME: Needs more sophisticated heuristics.
return false;
SmallSet<unsigned, 2> Uses;
SmallSet<unsigned, 2> Kills;
SmallSet<unsigned, 2> Defs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MO.isDef())
Defs.insert(MOReg);
else {
Uses.insert(MOReg);
if (MO.isKill() && MOReg != Reg)
Kills.insert(MOReg);
}
}
// Move the copies connected to MI down as well.
MachineBasicBlock::iterator From = MI;
MachineBasicBlock::iterator To = llvm::next(From);
while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
Defs.insert(To->getOperand(0).getReg());
++To;
}
// Check if the reschedule will not break depedencies.
unsigned NumVisited = 0;
MachineBasicBlock::iterator KillPos = KillMI;
++KillPos;
for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
MachineInstr *OtherMI = I;
// DBG_VALUE cannot be counted against the limit.
if (OtherMI->isDebugValue())
continue;
if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
return false;
++NumVisited;
const MCInstrDesc &OMCID = OtherMI->getDesc();
if (OMCID.hasUnmodeledSideEffects() || OMCID.isCall() || OMCID.isBranch() ||
OMCID.isTerminator())
// Don't move pass calls, etc.
return false;
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = OtherMI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MO.isDef()) {
if (Uses.count(MOReg))
// Physical register use would be clobbered.
return false;
if (!MO.isDead() && Defs.count(MOReg))
// May clobber a physical register def.
// FIXME: This may be too conservative. It's ok if the instruction
// is sunken completely below the use.
return false;
} else {
if (Defs.count(MOReg))
return false;
if (MOReg != Reg &&
((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
// Don't want to extend other live ranges and update kills.
return false;
}
}
}
// Move debug info as well.
while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
--From;
// Copies following MI may have been moved as well.
nmi = To;
MBB->splice(KillPos, MBB, From, To);
DistanceMap.erase(DI);
if (LV) {
// Update live variables
LV->removeVirtualRegisterKilled(Reg, KillMI);
LV->addVirtualRegisterKilled(Reg, MI);
} else {
for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = KillMI->getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
continue;
MO.setIsKill(false);
}
MI->addRegisterKilled(Reg, 0);
}
return true;
}
/// isDefTooClose - Return true if the re-scheduling will put the given
/// instruction too close to the defs of its register dependencies.
bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
MachineInstr *MI,
MachineBasicBlock *MBB) {
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
DE = MRI->def_end(); DI != DE; ++DI) {
MachineInstr *DefMI = &*DI;
if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
continue;
if (DefMI == MI)
return true; // MI is defining something KillMI uses
DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
if (DDI == DistanceMap.end())
return true; // Below MI
unsigned DefDist = DDI->second;
assert(Dist > DefDist && "Visited def already?");
if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
return true;
}
return false;
}
/// RescheduleKillAboveMI - If there is one more local instruction that reads
/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
/// current two-address instruction in order to eliminate the need for the
/// copy.
bool
TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
unsigned Reg) {
MachineInstr *MI = &*mi;
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
if (DI == DistanceMap.end())
// Must be created from unfolded load. Don't waste time trying this.
return false;
MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
// Don't mess with copies, they may be coalesced later.
return false;
unsigned DstReg;
if (isTwoAddrUse(*KillMI, Reg, DstReg))
return false;
bool SeenStore = true;
if (!KillMI->isSafeToMove(TII, AA, SeenStore))
return false;
SmallSet<unsigned, 2> Uses;
SmallSet<unsigned, 2> Kills;
SmallSet<unsigned, 2> Defs;
SmallSet<unsigned, 2> LiveDefs;
for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = KillMI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (MO.isUse()) {
if (!MOReg)
continue;
if (isDefTooClose(MOReg, DI->second, MI, MBB))
return false;
Uses.insert(MOReg);
if (MO.isKill() && MOReg != Reg)
Kills.insert(MOReg);
} else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
Defs.insert(MOReg);
if (!MO.isDead())
LiveDefs.insert(MOReg);
}
}
// Check if the reschedule will not break depedencies.
unsigned NumVisited = 0;
MachineBasicBlock::iterator KillPos = KillMI;
for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
MachineInstr *OtherMI = I;
// DBG_VALUE cannot be counted against the limit.
if (OtherMI->isDebugValue())
continue;
if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
return false;
++NumVisited;
const MCInstrDesc &MCID = OtherMI->getDesc();
if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
MCID.isTerminator())
// Don't move pass calls, etc.
return false;
SmallVector<unsigned, 2> OtherDefs;
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = OtherMI->getOperand(i);
if (!MO.isReg())
continue;
unsigned MOReg = MO.getReg();
if (!MOReg)
continue;
if (MO.isUse()) {
if (Defs.count(MOReg))
// Moving KillMI can clobber the physical register if the def has
// not been seen.
return false;
if (Kills.count(MOReg))
// Don't want to extend other live ranges and update kills.
return false;
} else {
OtherDefs.push_back(MOReg);
}
}
for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
unsigned MOReg = OtherDefs[i];
if (Uses.count(MOReg))
return false;
if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
LiveDefs.count(MOReg))
return false;
// Physical register def is seen.
Defs.erase(MOReg);
}
}
// Move the old kill above MI, don't forget to move debug info as well.
MachineBasicBlock::iterator InsertPos = mi;
while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
--InsertPos;
MachineBasicBlock::iterator From = KillMI;
MachineBasicBlock::iterator To = llvm::next(From);
while (llvm::prior(From)->isDebugValue())
--From;
MBB->splice(InsertPos, MBB, From, To);
nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
DistanceMap.erase(DI);
if (LV) {
// Update live variables
LV->removeVirtualRegisterKilled(Reg, KillMI);
LV->addVirtualRegisterKilled(Reg, MI);
} else {
for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = KillMI->getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
continue;
MO.setIsKill(false);
}
MI->addRegisterKilled(Reg, 0);
}
return true;
}
/// TryInstructionTransform - For the case where an instruction has a single
/// pair of tied register operands, attempt some transformations that may
/// either eliminate the tied operands or improve the opportunities for
/// coalescing away the register copy. Returns true if the tied operands
/// are eliminated altogether.
bool TwoAddressInstructionPass::
TryInstructionTransform(MachineBasicBlock::iterator &mi,
MachineBasicBlock::iterator &nmi,
MachineFunction::iterator &mbbi,
unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
SmallPtrSet<MachineInstr*, 8> &Processed) {
if (OptLevel == CodeGenOpt::None)
return false;
MachineInstr &MI = *mi;
const MCInstrDesc &MCID = MI.getDesc();
unsigned regA = MI.getOperand(DstIdx).getReg();
unsigned regB = MI.getOperand(SrcIdx).getReg();
assert(TargetRegisterInfo::isVirtualRegister(regB) &&
"cannot make instruction into two-address form");
// If regA is dead and the instruction can be deleted, just delete
// it so it doesn't clobber regB.
bool regBKilled = isKilled(MI, regB, MRI, TII);
if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
++NumDeletes;
return true; // Done with this instruction.
}
// Check if it is profitable to commute the operands.
unsigned SrcOp1, SrcOp2;
unsigned regC = 0;
unsigned regCIdx = ~0U;
bool TryCommute = false;
bool AggressiveCommute = false;
if (MCID.isCommutable() && MI.getNumOperands() >= 3 &&
TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
if (SrcIdx == SrcOp1)
regCIdx = SrcOp2;
else if (SrcIdx == SrcOp2)
regCIdx = SrcOp1;
if (regCIdx != ~0U) {
regC = MI.getOperand(regCIdx).getReg();
if (!regBKilled && isKilled(MI, regC, MRI, TII))
// If C dies but B does not, swap the B and C operands.
// This makes the live ranges of A and C joinable.
TryCommute = true;
else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
TryCommute = true;
AggressiveCommute = true;
}
}
}
// If it's profitable to commute, try to do so.
if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
++NumCommuted;
if (AggressiveCommute)
++NumAggrCommuted;
return false;
}
// If there is one more use of regB later in the same MBB, consider
// re-schedule this MI below it.
if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
++NumReSchedDowns;
return true;
}
if (TargetRegisterInfo::isVirtualRegister(regA))
ScanUses(regA, &*mbbi, Processed);
if (MCID.isConvertibleTo3Addr()) {
// This instruction is potentially convertible to a true
// three-address instruction. Check if it is profitable.
if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
// Try to convert it.
if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
++NumConvertedTo3Addr;
return true; // Done with this instruction.
}
}
}
// If there is one more use of regB later in the same MBB, consider
// re-schedule it before this MI if it's legal.
if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
++NumReSchedUps;
return true;
}
// If this is an instruction with a load folded into it, try unfolding
// the load, e.g. avoid this:
// movq %rdx, %rcx
// addq (%rax), %rcx
// in favor of this:
// movq (%rax), %rcx
// addq %rdx, %rcx
// because it's preferable to schedule a load than a register copy.
if (MCID.mayLoad() && !regBKilled) {
// Determine if a load can be unfolded.
unsigned LoadRegIndex;
unsigned NewOpc =
TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
/*UnfoldLoad=*/true,
/*UnfoldStore=*/false,
&LoadRegIndex);
if (NewOpc != 0) {
const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
if (UnfoldMCID.getNumDefs() == 1) {
MachineFunction &MF = *mbbi->getParent();
// Unfold the load.
DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
const TargetRegisterClass *RC =
TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
unsigned Reg = MRI->createVirtualRegister(RC);
SmallVector<MachineInstr *, 2> NewMIs;
if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
/*UnfoldLoad=*/true,/*UnfoldStore=*/false,
NewMIs)) {
DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
return false;
}
assert(NewMIs.size() == 2 &&
"Unfolded a load into multiple instructions!");
// The load was previously folded, so this is the only use.
NewMIs[1]->addRegisterKilled(Reg, TRI);
// Tentatively insert the instructions into the block so that they
// look "normal" to the transformation logic.
mbbi->insert(mi, NewMIs[0]);
mbbi->insert(mi, NewMIs[1]);
DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
<< "2addr: NEW INST: " << *NewMIs[1]);
// Transform the instruction, now that it no longer has a load.
unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
MachineBasicBlock::iterator NewMI = NewMIs[1];
bool TransformSuccess =
TryInstructionTransform(NewMI, mi, mbbi,
NewSrcIdx, NewDstIdx, Dist, Processed);
if (TransformSuccess ||
NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
// Success, or at least we made an improvement. Keep the unfolded
// instructions and discard the original.
if (LV) {
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
if (MO.isUse()) {
if (MO.isKill()) {
if (NewMIs[0]->killsRegister(MO.getReg()))
LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
else {
assert(NewMIs[1]->killsRegister(MO.getReg()) &&
"Kill missing after load unfold!");
LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
}
}
} else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
if (NewMIs[1]->registerDefIsDead(MO.getReg()))
LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
else {
assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
"Dead flag missing after load unfold!");
LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
}
}
}
}
LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
}
MI.eraseFromParent();
mi = NewMIs[1];
if (TransformSuccess)
return true;
} else {
// Transforming didn't eliminate the tie and didn't lead to an
// improvement. Clean up the unfolded instructions and keep the
// original.
DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
NewMIs[0]->eraseFromParent();
NewMIs[1]->eraseFromParent();
}
}
}
}
return false;
}
/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "Machine Function\n");
const TargetMachine &TM = MF.getTarget();
MRI = &MF.getRegInfo();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
InstrItins = TM.getInstrItineraryData();
LV = getAnalysisIfAvailable<LiveVariables>();
AA = &getAnalysis<AliasAnalysis>();
OptLevel = TM.getOptLevel();
bool MadeChange = false;
DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
DEBUG(dbgs() << "********** Function: "
<< MF.getFunction()->getName() << '\n');
// This pass takes the function out of SSA form.
MRI->leaveSSA();
// ReMatRegs - Keep track of the registers whose def's are remat'ed.
BitVector ReMatRegs(MRI->getNumVirtRegs());
typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
TiedOperandMap;
TiedOperandMap TiedOperands(4);
SmallPtrSet<MachineInstr*, 8> Processed;
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
mbbi != mbbe; ++mbbi) {
unsigned Dist = 0;
DistanceMap.clear();
SrcRegMap.clear();
DstRegMap.clear();
Processed.clear();
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
mi != me; ) {
MachineBasicBlock::iterator nmi = llvm::next(mi);
if (mi->isDebugValue()) {
mi = nmi;
continue;
}
// Remember REG_SEQUENCE instructions, we'll deal with them later.
if (mi->isRegSequence())
RegSequences.push_back(&*mi);
const MCInstrDesc &MCID = mi->getDesc();
bool FirstTied = true;
DistanceMap.insert(std::make_pair(mi, ++Dist));
ProcessCopy(&*mi, &*mbbi, Processed);
// First scan through all the tied register uses in this instruction
// and record a list of pairs of tied operands for each register.
unsigned NumOps = mi->isInlineAsm()
? mi->getNumOperands() : MCID.getNumOperands();
for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
unsigned DstIdx = 0;
if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
continue;
if (FirstTied) {
FirstTied = false;
++NumTwoAddressInstrs;
DEBUG(dbgs() << '\t' << *mi);
}
assert(mi->getOperand(SrcIdx).isReg() &&
mi->getOperand(SrcIdx).getReg() &&
mi->getOperand(SrcIdx).isUse() &&
"two address instruction invalid");
unsigned regB = mi->getOperand(SrcIdx).getReg();
TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
}
// Now iterate over the information collected above.
for (TiedOperandMap::iterator OI = TiedOperands.begin(),
OE = TiedOperands.end(); OI != OE; ++OI) {
SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
// If the instruction has a single pair of tied operands, try some
// transformations that may either eliminate the tied operands or
// improve the opportunities for coalescing away the register copy.
if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
unsigned SrcIdx = TiedPairs[0].first;
unsigned DstIdx = TiedPairs[0].second;
// If the registers are already equal, nothing needs to be done.
if (mi->getOperand(SrcIdx).getReg() ==
mi->getOperand(DstIdx).getReg())
break; // Done with this instruction.
if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
Processed))
break; // The tied operands have been eliminated.
}
bool IsEarlyClobber = false;
bool RemovedKillFlag = false;
bool AllUsesCopied = true;
unsigned LastCopiedReg = 0;
unsigned regB = OI->first;
for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
unsigned SrcIdx = TiedPairs[tpi].first;
unsigned DstIdx = TiedPairs[tpi].second;
const MachineOperand &DstMO = mi->getOperand(DstIdx);
unsigned regA = DstMO.getReg();
IsEarlyClobber |= DstMO.isEarlyClobber();
// Grab regB from the instruction because it may have changed if the
// instruction was commuted.
regB = mi->getOperand(SrcIdx).getReg();
if (regA == regB) {
// The register is tied to multiple destinations (or else we would
// not have continued this far), but this use of the register
// already matches the tied destination. Leave it.
AllUsesCopied = false;
continue;
}
LastCopiedReg = regA;
assert(TargetRegisterInfo::isVirtualRegister(regB) &&
"cannot make instruction into two-address form");
#ifndef NDEBUG
// First, verify that we don't have a use of "a" in the instruction
// (a = b + a for example) because our transformation will not
// work. This should never occur because we are in SSA form.
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
assert(i == DstIdx ||
!mi->getOperand(i).isReg() ||
mi->getOperand(i).getReg() != regA);
#endif
// Emit a copy or rematerialize the definition.
const TargetRegisterClass *rc = MRI->getRegClass(regB);
MachineInstr *DefMI = MRI->getVRegDef(regB);
// If it's safe and profitable, remat the definition instead of
// copying it.
if (DefMI &&
DefMI->getDesc().isAsCheapAsAMove() &&
DefMI->isSafeToReMat(TII, AA, regB) &&
isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
++NumReMats;
} else {
BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
regA).addReg(regB);
}
MachineBasicBlock::iterator prevMI = prior(mi);
// Update DistanceMap.
DistanceMap.insert(std::make_pair(prevMI, Dist));
DistanceMap[mi] = ++Dist;
DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
MachineOperand &MO = mi->getOperand(SrcIdx);
assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
"inconsistent operand info for 2-reg pass");
if (MO.isKill()) {
MO.setIsKill(false);
RemovedKillFlag = true;
}
MO.setReg(regA);
}
if (AllUsesCopied) {
if (!IsEarlyClobber) {
// Replace other (un-tied) uses of regB with LastCopiedReg.
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
MachineOperand &MO = mi->getOperand(i);
if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
if (MO.isKill()) {
MO.setIsKill(false);
RemovedKillFlag = true;
}
MO.setReg(LastCopiedReg);
}
}
}
// Update live variables for regB.
if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
LV->addVirtualRegisterKilled(regB, prior(mi));
} else if (RemovedKillFlag) {
// Some tied uses of regB matched their destination registers, so
// regB is still used in this instruction, but a kill flag was
// removed from a different tied use of regB, so now we need to add
// a kill flag to one of the remaining uses of regB.
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
MachineOperand &MO = mi->getOperand(i);
if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
MO.setIsKill(true);
break;
}
}
}
// Schedule the source copy / remat inserted to form two-address
// instruction. FIXME: Does it matter the distance map may not be
// accurate after it's scheduled?
TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
MadeChange = true;
DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
}
// Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
if (mi->isInsertSubreg()) {
// From %reg = INSERT_SUBREG %reg, %subreg, subidx
// To %reg:subidx = COPY %subreg
unsigned SubIdx = mi->getOperand(3).getImm();
mi->RemoveOperand(3);
assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
mi->getOperand(0).setSubReg(SubIdx);
mi->RemoveOperand(1);
mi->setDesc(TII->get(TargetOpcode::COPY));
DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
}
// Clear TiedOperands here instead of at the top of the loop
// since most instructions do not have tied operands.
TiedOperands.clear();
mi = nmi;
}
}
// Some remat'ed instructions are dead.
for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
if (MRI->use_nodbg_empty(VReg)) {
MachineInstr *DefMI = MRI->getVRegDef(VReg);
DefMI->eraseFromParent();
}
}
// Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
// SSA form. It's now safe to de-SSA.
MadeChange |= EliminateRegSequences();
return MadeChange;
}
static void UpdateRegSequenceSrcs(unsigned SrcReg,
unsigned DstReg, unsigned SubIdx,
MachineRegisterInfo *MRI,
const TargetRegisterInfo &TRI) {
for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
RE = MRI->reg_end(); RI != RE; ) {
MachineOperand &MO = RI.getOperand();
++RI;
MO.substVirtReg(DstReg, SubIdx, TRI);
}
}
/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
/// EXTRACT_SUBREG from the same register and to the same virtual register
/// with different sub-register indices, attempt to combine the
/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
/// reg1026 to reg1029.
void
TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
unsigned DstReg) {
SmallSet<unsigned, 4> Seen;
for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
unsigned SrcReg = Srcs[i];
if (!Seen.insert(SrcReg))
continue;
// Check that the instructions are all in the same basic block.
MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
if (SrcDefMI->getParent() != DstDefMI->getParent())
continue;
// If there are no other uses than copies which feed into
// the reg_sequence, then we might be able to coalesce them.
bool CanCoalesce = true;
SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(SrcReg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
CanCoalesce = false;
break;
}
SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
}
if (!CanCoalesce || SrcSubIndices.size() < 2)
continue;
// Check that the source subregisters can be combined.
std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
unsigned NewSrcSubIdx = 0;
if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
NewSrcSubIdx))
continue;
// Check that the destination subregisters can also be combined.
std::sort(DstSubIndices.begin(), DstSubIndices.end());
unsigned NewDstSubIdx = 0;
if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
NewDstSubIdx))
continue;
// If neither source nor destination can be combined to the full register,
// just give up. This could be improved if it ever matters.
if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
continue;
// Now that we know that all the uses are extract_subregs and that those
// subregs can somehow be combined, scan all the extract_subregs again to
// make sure the subregs are in the right order and can be composed.
MachineInstr *SomeMI = 0;
CanCoalesce = true;
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(SrcReg),
UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
assert(UseMI->isCopy());
unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
if ((NewDstSubIdx == 0 &&
TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
(NewSrcSubIdx == 0 &&
TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
CanCoalesce = false;
break;
}
// Keep track of one of the uses.
SomeMI = UseMI;
}
if (!CanCoalesce)
continue;
// Insert a copy to replace the original.
MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
SomeMI->getDebugLoc(),
TII->get(TargetOpcode::COPY))
.addReg(DstReg, RegState::Define, NewDstSubIdx)
.addReg(SrcReg, 0, NewSrcSubIdx);
// Remove all the old extract instructions.
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(SrcReg),
UE = MRI->use_nodbg_end(); UI != UE; ) {
MachineInstr *UseMI = &*UI;
++UI;
if (UseMI == CopyMI)
continue;
assert(UseMI->isCopy());
// Move any kills to the new copy or extract instruction.
if (UseMI->getOperand(1).isKill()) {
CopyMI->getOperand(1).setIsKill();
if (LV)
// Update live variables
LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
}
UseMI->eraseFromParent();
}
}
}
static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
MachineRegisterInfo *MRI) {
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
UE = MRI->use_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
if (UseMI != RegSeq && UseMI->isRegSequence())
return true;
}
return false;
}
/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
/// sub-register references of the register defined by REG_SEQUENCE. e.g.
///
/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
/// =>
/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
bool TwoAddressInstructionPass::EliminateRegSequences() {
if (RegSequences.empty())
return false;
for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
MachineInstr *MI = RegSequences[i];
unsigned DstReg = MI->getOperand(0).getReg();
if (MI->getOperand(0).getSubReg() ||
TargetRegisterInfo::isPhysicalRegister(DstReg) ||
!(MI->getNumOperands() & 1)) {
DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
llvm_unreachable(0);
}
bool IsImpDef = true;
SmallVector<unsigned, 4> RealSrcs;
SmallSet<unsigned, 4> Seen;
for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
unsigned SrcReg = MI->getOperand(i).getReg();
unsigned SubIdx = MI->getOperand(i+1).getImm();
if (MI->getOperand(i).getSubReg() ||
TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
llvm_unreachable(0);
}
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->isImplicitDef()) {
DefMI->eraseFromParent();
continue;
}
IsImpDef = false;
// Remember COPY sources. These might be candidate for coalescing.
if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
RealSrcs.push_back(DefMI->getOperand(1).getReg());
bool isKill = MI->getOperand(i).isKill();
if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
!isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
!TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
MRI->getRegClass(SrcReg), SubIdx)) {
// REG_SEQUENCE cannot have duplicated operands, add a copy.
// Also add an copy if the source is live-in the block. We don't want
// to end up with a partial-redef of a livein, e.g.
// BB0:
// reg1051:10<def> =
// ...
// BB1:
// ... = reg1051:10
// BB2:
// reg1051:9<def> =
// LiveIntervalAnalysis won't like it.
//
// If the REG_SEQUENCE doesn't kill its source, keeping live variables
// correctly up to date becomes very difficult. Insert a copy.
// Defer any kill flag to the last operand using SrcReg. Otherwise, we
// might insert a COPY that uses SrcReg after is was killed.
if (isKill)
for (unsigned j = i + 2; j < e; j += 2)
if (MI->getOperand(j).getReg() == SrcReg) {
MI->getOperand(j).setIsKill();
isKill = false;
break;
}
MachineBasicBlock::iterator InsertLoc = MI;
MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
.addReg(DstReg, RegState::Define, SubIdx)
.addReg(SrcReg, getKillRegState(isKill));
MI->getOperand(i).setReg(0);
if (LV && isKill)
LV->replaceKillInstruction(SrcReg, MI, CopyMI);
DEBUG(dbgs() << "Inserted: " << *CopyMI);
}
}
for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
unsigned SrcReg = MI->getOperand(i).getReg();
if (!SrcReg) continue;
unsigned SubIdx = MI->getOperand(i+1).getImm();
UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
}
if (IsImpDef) {
DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
MI->RemoveOperand(j);
} else {
DEBUG(dbgs() << "Eliminated: " << *MI);
MI->eraseFromParent();
}
// Try coalescing some EXTRACT_SUBREG instructions. This can create
// INSERT_SUBREG instructions that must have <undef> flags added by
// LiveIntervalAnalysis, so only run it when LiveVariables is available.
if (LV)
CoalesceExtSubRegs(RealSrcs, DstReg);
}
RegSequences.clear();
return true;
}