a nice and tidy:
%x1 = load i32* %0, align 4
%1 = icmp eq i32 %x1, 1179403647
br i1 %1, label %if.then, label %if.end
instead of doing lots of loads and branches. May the FreeBSD bootloader
long fit in its allocated space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130416 91177308-0d34-0410-b5e6-96231b3b80d8
wider load would allow elimination of subsequent loads, and when the wider
load is still a native integer type. This eliminates a ton of loads on
various benchmarks involving struct fields, though it is somewhat hobbled
by clang not being very aggressive about field alignment.
This is yet another step along the way towards resolving PR6627.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130390 91177308-0d34-0410-b5e6-96231b3b80d8
Modified LinearFunctionTestReplace to push the condition on the dead
list instead of eagerly deleting it. This can cause unnecessary
IV rewrites, which should have no effect on codegen and will not be an
issue once we stop generating canonical IVs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130340 91177308-0d34-0410-b5e6-96231b3b80d8
1. Only run the early (in the module pass pipe) instcombine/simplifycfg
if the "unit at a time" passes they are cleaning up after runs.
2. Move the "clean up after the unroller" pass to the very end of the
function-level pass pipeline. Loop unroll uses instsimplify now,
so it doesn't create a ton of trash. Moving instcombine later allows
it to clean up after opportunities are exposed by GVN, DSE, etc.
3. Introduce some phase ordering tests for things that are specifically
intended to be simplified by the full optimizer as a whole.
This resolves PR2338, and is progress towards PR6627, which will be
generating code that looks similar to test2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130241 91177308-0d34-0410-b5e6-96231b3b80d8
when X has multiple uses. This is useful for exposing secondary optimizations,
but the X86 backend isn't ready for this when X has a single use. For example,
this can disable load folding.
This is inching towards resolving PR6627.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130238 91177308-0d34-0410-b5e6-96231b3b80d8
translation fails. We were bailing out in some cases that would
cause us to miss GVN'ing some non-local cases away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130206 91177308-0d34-0410-b5e6-96231b3b80d8
return it as a clobber. This allows GVN to do smart things.
Enhance GVN to be smart about the case when a small load is clobbered
by a larger overlapping load. In this case, forward the value. This
allows us to compile stuff like this:
int test(void *P) {
int tmp = *(unsigned int*)P;
return tmp+*((unsigned char*)P+1);
}
into:
_test: ## @test
movl (%rdi), %ecx
movzbl %ch, %eax
addl %ecx, %eax
ret
which has one load. We already handled the case where the smaller
load was from a must-aliased base pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130180 91177308-0d34-0410-b5e6-96231b3b80d8
generated by llvm-gcc, since llvm-gcc uses 2 i64s for passing a 4 x float
vector on ARM rather than an i64 array like Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129878 91177308-0d34-0410-b5e6-96231b3b80d8
canonical, and generally leads to better code. Found while looking at
an article about saturating arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129545 91177308-0d34-0410-b5e6-96231b3b80d8
the same allocation size but different primitive sizes(e.g., <3xi32> and
<4xi32>). When ScalarRepl promotes them, it can't use a bit cast but
should use a shuffle vector instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129472 91177308-0d34-0410-b5e6-96231b3b80d8
reassociation opportunities are exposed. This fixes a bug where
the nested reassociation expects to be the IR to be consistent,
but it isn't, because the outer reassociation has disconnected
some of the operands. rdar://9167457
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129324 91177308-0d34-0410-b5e6-96231b3b80d8
has some bugs. If this is interesting functionality, it should be
reimplemented in the argpromotion pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129314 91177308-0d34-0410-b5e6-96231b3b80d8
is equivalent to any other relevant value; it isn't true in general.
If it is equivalent, the LoopPromoter will tell the AST the equivalence.
Also, delete the PreheaderLoad if it is unused.
Chris, since you were the last one to make major changes here, can you check
that this is sane?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129049 91177308-0d34-0410-b5e6-96231b3b80d8
space info. We crash with an assert in this case. This change checks that the
address space of the bitcasted pointer is the same as the gep ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128884 91177308-0d34-0410-b5e6-96231b3b80d8
after the given instruction; make sure to handle that case correctly.
(It's difficult to trigger; the included testcase involves a dead
block, but I don't think that's a requirement.)
While I'm here, get rid of the unnecessary warning about
SimplifyInstructionsInBlock, since it should work correctly as far as I know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128782 91177308-0d34-0410-b5e6-96231b3b80d8
that one of the numbers is signed while the other is unsigned. This could lead
to a wrong result when the signed was promoted to an unsigned int.
* Add the data layout line to the testcase so that it will test the appropriate
thing.
Patch by David Terei!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128577 91177308-0d34-0410-b5e6-96231b3b80d8
Some platforms may treat denormals as zero, on other platforms multiplication
with a subnormal is slower than dividing by a normal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128555 91177308-0d34-0410-b5e6-96231b3b80d8
vector types. This helps a lot with inlined functions when using the ARM soft
float ABI. Fixes <rdar://problem/9184212>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128453 91177308-0d34-0410-b5e6-96231b3b80d8
removes one use of X which helps it pass the many hasOneUse() checks.
In my analysis, this turns up very often where X = A >>exact B and that can't be
simplified unless X has one use (except by increasing the lifetime of A which is
generally a performance loss).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128373 91177308-0d34-0410-b5e6-96231b3b80d8
For example, on 32-bit architecture, don't promote all uses of the IV
to 64-bits just because one use is a 64-bit cast.
Alternate implementation of the patch by Arnaud de Grandmaison.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127884 91177308-0d34-0410-b5e6-96231b3b80d8
chose is having a non-memcpy/memset use and being larger than any native integer
type. Originally I chose having an access of a size smaller than the total size
of the alloca, but this caused some minor issues on the spirit benchmark where
SRoA runs again after some inlining.
This fixes <rdar://problem/8613163>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127718 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127498 91177308-0d34-0410-b5e6-96231b3b80d8
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127459 91177308-0d34-0410-b5e6-96231b3b80d8
after it has finished all of its reassociations, because its
habit of unlinking operands and holding them in a datastructure
while working means that it's not easy to determine when an
instruction is really dead until after all its regular work is
done. rdar://9096268.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127424 91177308-0d34-0410-b5e6-96231b3b80d8
This happens a lot in clang-compiled C++ code because it adds overflow checks to operator new[]:
unsigned *foo(unsigned n) { return new unsigned[n]; }
We can optimize away the overflow check on 64 bit targets because (uint64_t)n*4 cannot overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127418 91177308-0d34-0410-b5e6-96231b3b80d8
gave up when I realized I couldn't come up with a good name for what the
refactored function would be, to describe what it does.
This is PR9343 test12, which is test3 with arguments reordered. Whoops!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127318 91177308-0d34-0410-b5e6-96231b3b80d8
a union of a float, <2 x float>, and <4 x float>. This mostly comes up with the
use of vector intrinsics, especially in NEON when programmers know the layout of
the register file. This enables codegen to eliminate a lot of the subregister
traffic it would otherwise generate.
This commit only enables this for a small number of floating-point cases, but a
lot more integer cases. I assume this is okay for all ports, but I did not do
extensive testing of the quality of code involving i512 vectors and the like. If
there is a use case where this generates worse code than before, let me know and
we can scale it back.
This fixes <rdar://problem/9036264>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127317 91177308-0d34-0410-b5e6-96231b3b80d8
reachable uses, but there still might be uses in dead blocks. Use the
standard solution of replacing all the uses with undef. This is
a rare case because it's very sensitive to phase ordering in SimplifyCFG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127299 91177308-0d34-0410-b5e6-96231b3b80d8
the value splatted into every element. Extend this to getTrue and getFalse which
by providing new overloads that take Types that are either i1 or <N x i1>. Use
it in InstCombine to add vector support to some code, fixing PR8469!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127116 91177308-0d34-0410-b5e6-96231b3b80d8
possible. This goes into instcombine and instsimplify because instsimplify
doesn't need to check hasOneUse since it returns (almost exclusively) constants.
This fixes PR9343 #4#5 and #8!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127064 91177308-0d34-0410-b5e6-96231b3b80d8
"icmp pred %X, CI" and a number of examples where "%X = binop %Y, CI2".
Some of these cases (div and rem) used to make it through opt -O2, but the
others are probably now making code elsewhere redundant (probably instcombine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126988 91177308-0d34-0410-b5e6-96231b3b80d8
and iprintf is available on the target. Currently iprintf is only
marked as being available on the XCore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126935 91177308-0d34-0410-b5e6-96231b3b80d8
intersection of the LHS and RHS ConstantRanges and return "false" when
the range is empty.
This simplifies some code and catches some extra cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126744 91177308-0d34-0410-b5e6-96231b3b80d8
more work to do here, "icmp ult (urem X, 10), 11" doesn't optimize away yet.
Fixes example 3 from PR9343!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126741 91177308-0d34-0410-b5e6-96231b3b80d8