its fields.
This removes false dependencies between DSP instructions which access different
fields of the the control register. Implicit register operands are added to
instructions RDDSP and WRDSP after instruction selection, depending on the
value of the mask operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181041 91177308-0d34-0410-b5e6-96231b3b80d8
register.
- Define pseudo instructions which store or load ccond field of the DSP
control register.
- Emit the pseudos in MipsSEInstrInfo::storeRegToStack and loadRegFromStack.
- Expand the pseudos before callee-scan save.
- Emit instructions RDDSP or WRDSP to copy between ccond field and GPRs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180969 91177308-0d34-0410-b5e6-96231b3b80d8
Expand copy instructions between two accumulator registers before callee-saved
scan is done. Handle copies between integer GPR and hi/lo registers in
MipsSEInstrInfo::copyPhysReg. Delete pseudo-copy instructions that are not
needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180827 91177308-0d34-0410-b5e6-96231b3b80d8
Mips have delayslots for certain instructions
like jumps and branches. These are instructions
that follow the branch or jump and are executed
before the jump or branch is completed.
Early Mips compilers could not cope with delayslots
and left them up to the assembler. The assembler would
fill the delayslots with the appropriate instruction,
usually just a nop to allow correct runtime behavior.
The default behavior for this is set with .set reorder.
To tell the assembler that you don't want it to mess with
the delayslot one used .set noreorder.
For backwards compatibility we need to support
.set reorder and have it be the default behavior in the
assembler.
Our support for it is to insert a NOP directly after an
instruction with a delayslot when in .set reorder mode.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180584 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for recoded (meaning assembly-language compatible to
standard mips32) arithmetic 32-bit instructions.
Patch by Zoran Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179873 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows the Mips assembler to parse and emit nested
expressions as instruction operands. It also extends the
expansion of memory instructions when an offset is given as
an expression.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179657 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows the assembler to recognize $fcc0
as a valid register for conditional move instructions.
Corresponding test cases have been added.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179567 91177308-0d34-0410-b5e6-96231b3b80d8
Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this
would happen as long as floating point instructions are not needed.
Probably it would also make sense to compile as mips32 if atomic operations
are needed too. There may be other cases too.
A module pass prescans the IR and adds the mips16 or nomips16 attribute
to functions depending on the functions needs.
Mips 16 mode can result in a 40% code compression by utililizing 16 bit
encoding of many instructions.
The hope is for this to replace the traditional gcc way of dealing with
Mips16 code using floating point which involves essentially using soft float
but with a library implemented using mips32 floating point. This gcc
method also requires creating stubs so that Mips32 code can interact with
these Mips 16 functions that have floating point needs. My conjecture is
that in reality this traditional gcc method would never win over this
new method.
I will be implementing the traditional gcc method also. Some of it is already
done but I needed to do the stubs to finish the work and those required
this mips16/32 mixed mode capability.
I have more ideas for to make this new method much better and I think the old
method will just live in llvm for anyone that needs the backward compatibility
but I don't for what reason that would be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179185 91177308-0d34-0410-b5e6-96231b3b80d8
Modifier 'D' is to use the second word of a double integer.
We had previously implemented the pure register varient of
the modifier and this patch implements the memory reference.
#include "stdio.h"
int b[8] = {0,1,2,3,4,5,6,7};
void main()
{
int i;
// The first word. Notice, no 'D'
{asm (
"lw %0,%1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
// The second word
{asm (
"lw %0,%D1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179135 91177308-0d34-0410-b5e6-96231b3b80d8
and mips16 on a per function basis.
Because this patch is somewhat involved I have provide an overview of the
key pieces of it.
The patch is written so as to not change the behavior of the non mixed
mode. We have tested this a lot but it is something new to switch subtargets
so we don't want any chance of regression in the mainline compiler until
we have more confidence in this.
Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1.
For that reason there are derived versions of the register info, frame info,
instruction info and instruction selection classes.
Now we register three separate passes for instruction selection.
One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then
one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and
MipsSEISelDAGToDAG.cpp).
When the ModuleISel pass runs, it determines if there is a need to switch
subtargets and if so, the owning pointers in MipsTargetMachine are
appropriately changed.
When 16Isel or SEIsel is run, they will return immediately without doing
any work if the current subtarget mode does not apply to them.
In addition, MipsAsmPrinter needs to be reset on a function basis.
The pass BasicTargetTransformInfo is substituted with a null pass since the
pass is immutable and really needs to be a function pass for it to be
used with changing subtargets. This will be fixed in a follow on patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179118 91177308-0d34-0410-b5e6-96231b3b80d8
This patch initializes t9 to the handler address, but only if the relocation
model is pic. This handles the case where handler to which eh.return jumps
points to the start of the function.
Patch by Sasa Stankovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178588 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the following two tests which have been failing on
llvm-mips-linux builder since r178403:
LLVM :: Analysis/Profiling/load-branch-weights-ifs.ll
LLVM :: Analysis/Profiling/load-branch-weights-loops.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178584 91177308-0d34-0410-b5e6-96231b3b80d8
Check that instruction selection can select multiply-add/sub DSP instructions
from a pattern that doesn't have intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178406 91177308-0d34-0410-b5e6-96231b3b80d8
derived class MipsSETargetLowering.
We shouldn't be generating madd/msub nodes if target is Mips16, since Mips16
doesn't have support for multipy-add/sub instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178404 91177308-0d34-0410-b5e6-96231b3b80d8
The new instructions have explicit register output operands and use table-gen
patterns instead of C++ code to do instruction selection.
Mips16's instructions are unaffected by this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178403 91177308-0d34-0410-b5e6-96231b3b80d8