No functional change.
I initially thought that pulling the Pat<> into the instruction pattern was
not possible because it was doing a transform on the index in order to convert
it from a per-element (extract_subvector) index into a per-chunk (vextract*x4)
index.
Turns out this also works inside the pattern because the vextract_extract
PatFrag has an OperandTransform EXTRACT_get_vextract{128,256}_imm, so the
index in $idx goes through the same conversion.
The existing test CodeGen/X86/avx512-insert-extract.ll extended in the
previous commit provides coverage for this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218480 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change.
These are now implemented as two levels of multiclasses heavily relying on the
new X86VectorVTInfo class. The multiclass at the first level that is called
with float or int provides the 128 or 256 bit subvector extracts. The second
level provides the register and memory variants and some more Pat<>s.
I've compared the td.expanded files before and after. One change is that
ExeDomain for 64x4 is SSEPackedDouble now. I think this is correct, i.e. a
bugfix.
(BTW, this is the change that was blocked on the recent tablegen fix. The
class-instance values X86VectorVTInfo inside vextract_for_type weren't
properly evaluated.)
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218478 91177308-0d34-0410-b5e6-96231b3b80d8
td pattern). Currently we only model the immediate operand variation of
VPERMILPS and VPERMILPD, we should make that clear in the pseudos used.
Will be adding support for the variable mask variant in my next commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218282 91177308-0d34-0410-b5e6-96231b3b80d8
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217310 91177308-0d34-0410-b5e6-96231b3b80d8
We discussed the issue of generality vs. readability of the AVX512 classes
recently. I proposed this approach to try to hide and centralize the mappings
we commonly perform based on the vector type. A new class X86VectorVTInfo
captures these.
The idea is to pass an instance of this class to classes/multiclasses instead
of the corresponding ValueType. Then the class/multiclass can use its field
for things that derive from the type rather than passing all those as separate
arguments.
I modified avx512_valign to demonstrate this new approach. As you can see
instead of 7 related template parameters we now have one. The downside is
that we have to refer to fields for the derived values. I named the argument
'_' in order to make this as invisible as possible. Please let me know if you
absolutely hate this. (Also once we allow local initializations in
multiclasses we can recover the original version by assigning the fields to
local variables.)
Another possible use-case for this class is to directly map things, e.g.:
RegisterClass KRC = X86VectorVTInfo<32, i16>.KRC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216209 91177308-0d34-0410-b5e6-96231b3b80d8
This change further evolves the base class AVX512_masking in order to make it
suitable for the masking variants of the FMA instructions.
Besides AVX512_masking there is now a new base class that instructions
including FMAs can use: AVX512_masking_3src. With three-source (destructive)
instructions one of the sources is already tied to the destination. This
difference from AVX512_masking is captured by this new class. The common bits
between _masking and _masking_3src are broken out into a new super class
called AVX512_masking_common.
As with valign, there is some corresponding restructuring of the underlying
format classes. The idea is the same we want to derive from two classes
essentially: one providing the format bits and another format-independent
multiclass supplying the various masking and non-masking instruction variants.
Existing fma tests in avx512-fma*.ll provide coverage here for the non-masking
variants. For masking, the next patches in the series will add intrinsics and
intrinsic tests.
For AVX512_masking_3src to work, the (ins ...) dag has to be passed *without*
the leading source operand that is tied to dst ($src1). This is necessary to
properly construct the (ins ...) for the different variants. For the record,
I did check that if $src is mistakenly included, you do get a fairly intuitive
error message from the tablegen backend.
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215660 91177308-0d34-0410-b5e6-96231b3b80d8
Added avx512_movnt_vl multiclass for handling 256/128-bit forms of instruction.
Added encoding and lowering tests.
Reviewed by Elena Demikhovsky <elena.demikhovsky@intel.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215536 91177308-0d34-0410-b5e6-96231b3b80d8
I think that this will scale better in most cases than adding a Pat<> for each
mapping from the intrinsic DAG to the intruction (i.e. rri, rrik, rrikz). We
can just lower to the SDNode and have the resulting DAG be matches by the DAG
patterns.
Alternatively (long term), we could keep the Pat<>s but generate them via the
new AVX512_masking multiclass. The difficulty is that in order to formulate
that we would have to concatenate DAGs. Currently this is only supported if
the operators of the input DAGs are identical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215473 91177308-0d34-0410-b5e6-96231b3b80d8
This completes one item from the todo-list of r215125 "Generate masking
instruction variants with tablegen".
The AddedComplexity is needed just like for the k variant.
Added a codegen test based on valignq.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215173 91177308-0d34-0410-b5e6-96231b3b80d8
The AddedComplexity is needed just like in avx512_perm_3src. There may be a
bug in the complexity computation...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215168 91177308-0d34-0410-b5e6-96231b3b80d8
After adding the masking variants to several instructions, I have decided to
experiment with generating these from the non-masking/unconditional
variant. This will hopefully reduce the amount repetition that we currently
have in order to define an instruction with all its variants (for a reg/mem
instruction this would be 6 instruction defs and 2 Pat<> for the intrinsic).
The patch is the first cut that is currently only applied to valignd/q to make
the patch small.
A few notes on the approach:
* In order to stitch together the dag for both the conditional and the
unconditional patterns I pass the RHS of the set rather than the full
pattern (set dest, RHS).
* Rather than subclassing each instruction base class (e.g. AVX512AIi8),
with a masking variant which wouldn't scale, I derived the masking
instructions from a new base class AVX512 (this is just I<> with
Requires<HasAVX512>). The instructions derive from this now, plus a new set
of classes that add the format bits and everything else that instruction
base class provided (i.e. AVX512AIi8 vs. AVX512AIi8Base).
I hope we can go incrementally from here. I expect that:
* We will need different variants of the masking class. One example is
instructions requiring three vector sources. In this case we tie one of the
source operands to dest rather than a new implicit source operand ($src0)
* Add the zero-masking variant
* Add more AVX512*Base classes as new uses are added
I've looked at X86.td.expanded before and after to make sure that nothing got
lost for valignd/q.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215125 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to what I did with the two-source permutation recently. (It's
almost too similar so that we should consider generating the masking variants
with some tablegen help.)
Both encoding and intrinsic tests are added as well. For the latter, this is
what the IR that the intrinsic test on the clang side generates.
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214890 91177308-0d34-0410-b5e6-96231b3b80d8
This was currently part of lowering to PALIGNR with some special-casing to
make interlane shifting work. Since AVX512F has interlane alignr (valignd/q)
and AVX512BW has vpalignr we need to support both of these *at the same time*,
e.g. for SKX.
This patch breaks out the common code and then add support to check both of
these lowering options from LowerVECTOR_SHUFFLE.
I also added some FIXMEs where I think the AVX512BW and AVX512VL additions
should probably go.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214888 91177308-0d34-0410-b5e6-96231b3b80d8
The packed integer pattern becomes the DAG pattern for rri and the packed
float, another Pat<> inside the multiclass.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214885 91177308-0d34-0410-b5e6-96231b3b80d8
As destination k0 is allowed but not as predicate/writemask.
I also modified the test to allow checking of error messages by the assembler.
I applied a similar approach to the test ret.s in the same directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212504 91177308-0d34-0410-b5e6-96231b3b80d8
This new multiclass, avx512_perm_table_3src derives from the current one and
provides the Pat<>. The next patch will add another Pat<> that uses the
writemask.
Note that I dropped the type annotation from the intrinsic call, i.e.: (v16f32
VR512:$src1) -> R512:$src1. I think that this should be fine (at least many
intrinsic calls don't provide them) and it greatly reduces the number of
template arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212222 91177308-0d34-0410-b5e6-96231b3b80d8
This includes assembler and codegen support (see the new tests in
avx512-encodings.s and avx512-shuffle.ll).
<rdar://problem/17492620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212221 91177308-0d34-0410-b5e6-96231b3b80d8
For now I only updated the _alt variants. The main variants are used by
codegen and that will need a bit more work to trigger.
<rdar://problem/17492620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212114 91177308-0d34-0410-b5e6-96231b3b80d8
Adding a writemask variant would require a third asm string to be passed to
the template. Generate the AsmString in the template instead.
No change in X86.td.expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212113 91177308-0d34-0410-b5e6-96231b3b80d8
For now I used a separate template for these sub-vector/tuple broadcasts
rather than sharing the mem variants with avx512_int_broadcast_rm.
<rdar://problem/17402869>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211828 91177308-0d34-0410-b5e6-96231b3b80d8
The *_alt defs for vcmp are used by the InstParser (the asm string in the main
def is used by the InstPrinter) . The former was accepting vector registers
as destination rather than mask registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211750 91177308-0d34-0410-b5e6-96231b3b80d8
Note that I followed the AVX2 convention here and didn't add LLVM intrinsics
for stores. These can be generated with the nontemporal hint on LLVM IR
stores (see new test). The GCC builtins are lowered directly into nontemporal
stores.
<rdar://problem/17082571>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211176 91177308-0d34-0410-b5e6-96231b3b80d8
Use the max 64-bit element size with EVEX_CD8. This should work since element
size is ignored for a full-vector access (FVM).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211175 91177308-0d34-0410-b5e6-96231b3b80d8
1) Changed gather and scatter intrinsics. Now they are aligned with GCC built-ins. There is no more non-masked form. Masked intrinsic receives -1 if all lanes are executed.
2) I changed the function that works with intrinsics inside X86ISelLowering.cpp. I put all intrinsics in one table. I did it for INTRINSICS_W_CHAIN and plan to put all intrinsics from WO_CHAIN set to the same table in order to avoid the long-long "switch". (I wanted to use static map initialization that allowed by C++11 but I wasn't able to compile it on VS2012).
3) I added gather/scatter prefetch intrinsics.
4) I fixed MRMm encoding for masked instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208522 91177308-0d34-0410-b5e6-96231b3b80d8